
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Robust Voice Activity Detector Using an
Acoustic Doppler Radar

Rongqiang Hu, Bhiksha Raj

TR2005-159 November 2005

Abstract

This paper describes a robust voice activity detector using an acoustic Doppler radar device.
The sensor is used to detect the dynamic status of the speaker’s mouth. At the frequencies
of operation, background noises are largely attenuated, rendering the device robust to external
acoustic noises in most operating conditions. Unlike the other non-acoustic sensors, the device
need not be taped to the speaker, making it more acceptable in most situations. In this paper,
various fetures computed from the sensor output are exploited for voice activity detection. The
best set of features is selected based on robustness analysis. A support vector machine classifier is
used to make the final speech/non-speech decision. Experimental results show that the proposed
doppler-based voice activity detector improves speech/non-speech classification accuracy over
that obtained using speech alone. The most significant improvements happen in low signal-to-
noise (SNR) environments.

IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2005
201 Broadway, Cambridge, Massachusetts 02139



MERLCoverPageSide2



A ROBUST VOICE ACTIVITY DETECTOR USING AN ACOUSTIC DOPPLER RADAR

Rongqiang Hu1, Bhiksha Raj2

1Georgia Institute of Technology,2Mitsubishi Electric Research Laboratories

ABSTRACT

This paper describes a robust voice activity detector using an
acoustic Doppler radar device. The sensor is used to detect the
dynamic status of the speaker’s mouth. At the frequencies of op-
eration, background noises are largely attenuated, rendering the
device robust to external acoustic noises in most operating condi-
tions. Unlike the other non-acoustic sensors, the device need not
be taped to the speaker, making it more acceptable in most situ-
ations. In this paper, various features computed from the sensor
output are exploited for voice activity detection. The best set of
features is selected based on robustness analysis. A support vector
machine classifier is used to make the final speech/non-speech de-
cision. Experimental results show that the proposed doppler-based
voice activity detector improves speech/non-speech classification
accuracy over that obtained using speech alone. The most signifi-
cant improvements happen in low signal-to-noise (SNR) environ-
ments.

1. INTRODUCTION

Voice activity detectors (VAD) are used to demarcate regions
of conversational speech from silent or non-speech regions of a
speech signal. VADs are important to many speech processing
applications such as speech enhancement, speech coding, speech
recognition etc. Various VAD algorithms have been proposed in
the literature, that are based on zero crossing rates, spectral repre-
sentatives (LPC, LSF, etc.), statistical speech and noise modeling
[1], source separation, and decision-making based on a combina-
tion of different features [2]. The algorithms perform well in quiet
or high SNR environments. But the performance drops dramati-
cally as the level of background noise increases.

Conventional voice activity detectors work chiefly from mea-
surements obtained from the speech signal. A recent trend has
been the use of measurements fromsecondarysensors in addi-
tional to the primary speech recording, for the measurement of
speech signals in the presence of strong background noise. These
sensors typically provide measurements of one or more aspects of
the speech production process such as a coarse measurement of the
speech signal itself, or measurements of glottal activity, as a proxy
for the actual speech and tend to be relatively immune to acoustic
noise. These sensors typically do not provide enough information
about the speech generation process to replace microphone sen-
sors; instead, these sensors must be used in conjunction with a
microphone and additional signal processing in order to augment
the acoustic speech signal for the purpose of speech enhancement,
coding and recognition in high-noise environments. Secondary
sensors have been shown to greatly improve the performance of
voice activity detection in high noise environments.

Most current secondary sensors used for voice activity detec-
tion, however, suffer the drawback that they require contact with
the speaker. Bone conduction microphones must be mounted on

a the jaw bone. Physiological microphones (P-mics), throat mi-
crophones and the non-acoustic glottal electromagnetic sensors
(GEMS) must all be mounted on the speaker’s face or throat. This
restricts their utility in most applications.

In this paper we propose the use of an entirely different va-
riety of secondary sensor for voice activity detection - a Doppler
acoustic radar. The Doppler radar consists of a high-frequency ul-
tra sound emitter and an acoustic transducer that is tuned to the
transmitted frequency. The ultra-sound tone emitted from the sen-
sor is reflected from the speaker’s face and undergoes a Doppler
frequency shift that is proportional to normal velocity of the por-
tion of the face that it is reflected from. The spectrum of the re-
flected signal thus contains an spectrum of frequencies that rep-
resent the motion of the speakers cheeks, lips, tongue, etc. The
voicing state of the speaker (i.e. speech. vs. non-speech activity)
is estimated using a support vector machine classifier on appropri-
ate measurement derived from this reflected signal.

While the Doppler measurements are not as detailed as those
obtained from secondary sensors such as P-mics or GEMS sen-
sors, the measurements obtained from it are nevertheless adequate
for voice activity detection. Experiments conducted on spoken ut-
terances collected in the presence of a variety of background noises
show that the proposed VAD algorithm based on acoustic Doppler
measurements results in significantly better voice activity detec-
tion than that obtained from measurements of the speech signal
alone. Additionally the proposed secondary sensor has the advan-
tage that it need not be mounted on the speaker. In fact it is ef-
fective even at a distance of 10-15cm from the speaker. It is also
far more economical than cameras (which can also be used to de-
rive useful secondary measurements from a distance) - an acoustic
Doppler radar setup can be constructed for less than $10.

The rest of the paper is arranged as follows: in Section 2 we
briefly review the problem of voice activity detection, and the use
of secondary sensors for the purpose. In Section 3 we describe the
acoustic Doppler radar based secondary sensor. In Section 4 we
present an analysis of the mutual information between the signal
captured by the proposed Doppler sensor and the speech signal. In
Section 5 we describe the features computed from the Doppler sig-
nal. In Section 6 we review the Support Vector Machine classifier
used for speech/non-speech detection. In Section 7 we describe
our experimental evaluation of the proposed voice activity detec-
tion algorithm and finally in Section 8 we present our conclusions.

2. VOICE ACTIVITY DETECTION USING SECONDARY
SENSORS

Voice activity detection is the problem of determining whether any
segment of a speech recording occurs within a continuously spo-
ken utterance or if it actually represents the bracketing non-speech
regions. This has traditionally been performed using the recorded



speech signal itself. When the speaker is speaking, the recorded
signalY (f) (as represented in the frequency domain) is a mix-
ture of speechS(f) and noiseN(f), i.e. Y (f) ∼= S(f) + N(f).
When no speech is uttered, the sensor captures chiefly noise, i.e.
Y (f) = N(F ). The goal of VAD is to determine whether speech
is present or not from observations ofY (f).

The simplest VAD procedures are based on thresholding of
measurements such as zero crossings and energy. More sophisti-
cated techniques (e.g. [1]) employ statistical models applied either
to the signal itself, or to features derived from it, such as spec-
tra, LPC residuals, etc. These algorithms perform very well in
clean and low-noise environments. However, in real-world envi-
ronments with high levels of noise they often perform poorly.

The use of secondary sensors to improve the noise robust-
ness of VAD has become increasingly popular in recent times.
These are sensors that obtain secondary measurements either of
the speech signal, or of the underlying speech generation process.
An important criterion for an effective secondary sensor is that its
measurements must be relatively immune to or independent of the
background noise that affects the speech signal itself.

Most current research on secondary sensors for VAD is con-
centrated on sensors whose measurements are linearly relatable
to the speech signal. From a speech production perspective, the
speech signal can be modeled as

S(f) = G(f)V (f)R(f) (1)

whereG(f), V (f), andR(f) represent glottal excitation, the fre-
quency response of the vocal cavity and lip radiation respectively.
In most current research, measurements from the secondary sensor
are required to be linearly relatable to one or more of the compo-
nents on the right hand side of Equation 1. That is, the measure-
ments must be of the formY (f) = H(f)S(f) in speech regions,
whereH(f) represents a linear filter. Additionally, and more im-
portantly, they must be relatively insensitive to the noise that cor-
rupts the speech signal, i.e. in non-speech regionsY (f) ¿ N(f).

A variety of secondary sensors have been proposed that sat-
isfy these conditions. Examples of such sensors are the physi-
ological microphone (P-mic), which measures the movement of
the tissue near the speaker’s throat, and the bone-conduction mi-
crophone, which measures the vibration of bone associated with
speech production. In these sensorsH(f) is a low-pass filter.
The signal captured in non-speech areas is significantly lower than
N(f). A second kind of secondary sensor seeks to provide a func-
tion of the glottal excitation, e.g. the Electroglottograph (EGG)[3],
and the glottal electromagnetic sensor (GEMS) [4]. In this case,
X(f) ∼= G(f) during voiced speech, and the corrupting noise is
nearly 0 in non-speech regions.

All of these secondary sensors have shown promise in many
speech applications, such as voice activity detection, speech en-
hancement and coding [5, 6, 7]. However, they typically re-
quire that sensors be placed in direct contact with the talkers
skin in a suitable location, making them uncomfortable to users.
Also, the measurements they provide are not always perfectly lin-
early relatable to speech. While the P-mic and bone-conduction
microphone provide relatively noise-free measurements at low-
frequencies, they do not capture speech-related information in
higher frequencies, and are unreliable in unvoiced regions. The
EGG and GEMS sensors approximate glottal excitation function
during voiced speech, but they can not provide any measurement
about unvoiced speech. The high cost of these sensors also makes
them impractical in many applications.

Fig. 1. The Doppler-augmented microphone used in our experi-
ments. The two devices taped to the sides of the central audio mi-
crophone are a high-frequency emitter and a high-frequency sen-
sor.

3. THE ACOUSTIC DOPPLER SENSOR

Contrary to current secondary sensors, the acoustic Doppler radar
that we propose to use as a secondary sensor does not attempt to
obtain measurements that are linearly relatable to the speech. In-
stead, it is based on a very simple principle: the facial structures of
a person’s face, including their cheeks, lips, and particularly their
tongue move when the person speaks1. It should hence be possible
to determine if the person is speaking or not simply by observing
whether they are moving their vocal apparatus or not. While such
a determination can be made using visual aids such as a camera,
these solutions tend to be expensive, both in economical and com-
putational terms. A simpler solution might be use a simple motion
detector; however simple detectors cannot distinguish between the
range of motions that a speaker’s vocal apparatus can make. Such
measurements can, however be made by an Doppler radar.

Acoustic Doppler radars are based on a simple principle: when
a high-frequency tone is reflected from a moving object, the re-
flected signal from the object undergoes a frequency shift that is
related to the velocity of the object in the direction of the radar. If
the tone emitted by the radar has a frequencyf and the velocity
of the object in the direction of the radar isv, the frequency of the
reflected signalf ′ is related tof andv by

f ′ =
(c + v)f

(c− v)
(2)

wherec is the velocity of sound. When the target object has several
moving parts, such as a mouth, where each part has a different
velocity, the signal reflected by each component of the object has
a different frequency. The reflected signal captured by the radar
therefore has an entire spectrum of frequencies that represent the
spectrum of velocities in the moving parts of the target.

When the target of the acoustic Doppler radar is the human
mouth and its surrounding tissue, the spectrum of the reflected sig-
nal represents the set of velocities of all moving parts in the mouth,
including the cheeks, lips and tongue. In addition, the energy in the
reflected signal depends on the configuration of mouth, e.g. the
signal reflected from an open mouth has less energy due to the ab-
sorbtion of the back of the mouth or, if the radar is placed at an an-
gle, due to the fact that some of the incident signal travels straight
through unimpeded (and is reflected perhaps by a relatively distant
object with significant attenuation).

Figure 1 shows the acoustic Doppler radar augmented micro-
phone that we have used in our work. In this embodiment, the
complete setup has three components. The central component is a
conventional acoustic microphone. To one side of it is a ultra-

1We do not account for special cases such as closed-mouth talking and
ventriloquist speech in this assumption



sound emitter that emits a 40Khz tone. To the other side is a
high-frequency transducer that is tuned to capture signals around
40Khz. The microphone and transmitter are well-aligned, and
placed directly pointed to the mouth. The dynamic status of the
mouth moving is measured by the device. It must be noted that the
device also captures high-frequency harmonics from the speech
and any background noise; however these are significantly attenu-
ated with respect to the level of the reflected Doppler signal in most
standard operating conditions2. The device does not require con-
tact with the skin. As may be inferred from Figure 1, the acoustic
Doppler was placed at exactly the same distance as the desktop
microphone itself from the speakers, in our experiments. The cost
of the entire setup shown in the Figure is not significantly greater
than that of the acoustic microphone itself: the high-frequency
transmitter and receiver both cost less than a dollar. The trans-
mission and capture of the Doppler signal can be performed con-
currently with that of the acoustic signal by a standard stereo sound
card. Since the high-frequency transducer is highly tuned and has
a bandwidth of only about 4Khz, the principle of band-pass sam-
pling may be applied, and the signal need not be sampled at more
than 12Khz (although in our experiments we have sampled the sig-
nal at 96Khz).

4. MUTUAL INFORMATION ANALYSIS OF THE
DOPPLER SENSOR

In order to be effective, the measurements from the acoustic
Doppler sensor must be related to the underlying clean speech sig-
nal. Stated otherwise, knowledge of the Doppler signal must re-
duce the uncertainty in our knowledge of the speech signal. The
predictability of the speech signal from the Doppler measurement
can be stated as the mutual information between the two signals.

The mutual information (MI,I(x, y)) between two variables
x andy is described as

I(x, y) = D[P (x, y) ‖P (x), P (y)] (3)

=

Z
x,y

P (x, y) log
P (x, y)

P (x)P (y)
dxdy (4)

whereP (x) andP (y) are the densities ofx andy respectively, and
P (x, y) is the joint density ofx andy. D denotes the Kullback-
Leibler divergence, also known as the relative entropy. The MI
covers all kinds of linear and non-linear dependencies [8]. In case
the statistical distributions of the variables are unknown and only
a limited amount of samples of the variables are available for mea-
surement, a non-parametric estimator is proposed in [9]. The al-
gorithm approximates the mutual information arbitrarily closely in
probability by calculating relative frequencies on appropriate par-
titions of the data space and achieving conditional independence
on the rectangles of which the partitions are made.

Reviewing the objectives of employing a secondary sensor in
robust speech processing , the qualification of a secondary sen-
sor in robust speech processing can be summarized in information
theoretic terms as follows:

• High dependency between the outputs of the secondary sen-
sorX and clean speechS, i.e. I(X, S) is large.

2The system will however not work if there are any devices in the vicin-
ity that specifically emit noise at 40Khz.

• High independence of the outputs of a secondary sensorX
and noiseN ,i.e. I(X, N) is low.

In recordings obtained from high-noise environments, the second
condition may also be stated as a requirement of lowI(X, Y ), i.e.
of independence between the doppler and noisy speech measure-
ments. Given these criteria, the robustness of a secondary sensor
can be represented as the normalized change of mutual informa-
tion in noisy environments.

∆I(X, Y ‖SNR) =
I(X, S)− I(X, Y ‖SNR)

I(X, S)
(5)

The greater the value of∆I(X, Y ‖SNR) the more useful the
measurements of the sensor can be expected to be in processing
highly noisy speech.

The MI analysis of recordings from GEMS, P-mic and EGG
sensors is listed in Table 1. The results confirm the observations
in [6, 7] that GEMS contains more secondary information about
speech than P-mics and EGG, and is also more robust than the oth-
ers two. As described in section 2, P-mic recordings contain some
level of acoustic noise. All of these sensors have been applied
to robust speech processing and have produced improved perfor-
mance in voice activity detection and speech enhancement [7].

Table 1. Mutual Information between the sensor outputs and
acoustic signals

Clean Environment GEMS P-mic EGG
I(X,S) 0.272 0.075 0.091

Noise Office Tank Shoot Helicopter
∆I(X, Y ) (23dB) (1dB) (13dB) (3dB)

GEMS 0.202 0.993 0.743 0.996
P-Mic 0.280 0.693 0.027 0.640
EGG 0.044 0.912 0.626 0.967

The MI between the Doppler radar and acoustic speech signals
is given in Table 2. The table analyses signals captured in the pres-
ence of both stationary and non-stationary noises. The similarity
between the numbers in Tables 1 and 2 indicate that the Doppler
radar sensor can provide effective secondary information for ro-
bust speech processing in noisy environments.

Table 2. Mutual Information between the Doppler radar outputs
and acoustic signals

Clean Environment Doppler Radar
I(X,S) 0.097

Noise Office Car Babble Speech Music
(22dB) (4dB) (5dB) (7dB) (5dB)

∆I(X, Y ) 0.041 0.938 0.959 0.680 0.835

5. FEATURE SELECTION

The motion of the mouth plays an essential role in speech produc-
tion. In order to produce different sounds, a person must change
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Fig. 2. Example of features in music noise (SNR=12dB)

the configuration of their entire vocal apparatus, particularly the
mouth. This is true regardless of whether the sound is voiced or
unvoiced. Sensors that measure voicing-based information from
the vocal tract are only effective in detecting voiced speech. For
unvoiced sounds, such as unvoiced consonants, these sensors do
not provide any information. Measuring the dynamic status of the
mouth, however, is effective in detecting both voiced and unvoiced
sounds.

5.1. Parameter Extraction

In processing Doppler radar signals, two key features are consid-
ered: reflected energy and peak reflected frequency. When a tone
of frequencyf is reflected off a slowly moving object with veloc-
ity v ¿ c, the reflected frequencyf ′ is given by the following
modification of Equation 2:

f ′ =

�
1 +

2v

c

�
f (6)

When a speaker’s mouth is closed, there is no motion of the
mouth, i.e.v = 0. Hence, the observed frequencyf ′ = f . While
speaking, the mouth and tongue of the speaker move. The veloc-
ity of the moving parts of the mouth are typically in the order of
0.1m/s, although the peak velocity of the tongue can be signifi-
cantly greater. Since our acoustic Doppler device emits a signal
at 40KHz, the reflected frequencyf ′ will be in the neighbourhood

Table 3. Mutual Information of features with voice activity labels
Clean Ef ∆Ef El ∆El Fp ∆Fp

I(A, L) 0.878 1.594 1.175 1.932 0.313 2.709
Feature Office Car Babble Speech Music

∆I(A, L) (22dB) (4dB) (5dB) (7dB) (5dB)
Ef 0.001 0.012 0.009 0.042 0.006

∆Ef 0.003 0.010 0.022 0.013 0.029
El 0.002 0.007 0.016 0.038 0.056

∆El 0.005 0.019 0.039 0.051 0.078
Fp 0.028 0.037 0.055 0.083 0.062

∆Fp 0.009 0.034 0.026 0.009 0.017

of 40020Hz. Although an entire spectrum of frequencies is re-
flected from the various moving parts of the mouth, typically one
frequency dominates the rest. The actual observed peak frequency
can be calculated picking the highest peak from the Fourier trans-
form of radar signals. The velocity of the vocal parts, and therefore
the observed peak frequency, vary significantly in time. Therefore,
a very high resolution FFT is required in the frequency region
(39900Hz-40100Hz) to calculate the accurate peak frequency, in
order to distinguish between different states of oral motion.

When the mouth is open, radar signals reach the “walls” of
the mouth at various angles. The signals are reflected in many di-
rections. Therefore, the received radar energy varies. This feature
can also be used to indicate the speaking status. Since there is, in
actuality, an entire range of velocities in the vocal apparatus, the
“interesting” signals exist in a frequency range of 39900-40100Hz.
We therefore calculate the signal energy in this frequency band as
a feature, which we denote as “full-band energy“.

In addition to the Doppler reflections, the high-frequency
transducer also captures high-frequency harmonics of the speech
signal, albeit at highly attenuated levels. Since this information
is present, we also choose to use it for voice activity detection.
We therefore compute the signal energy in the frequency band
(20000Hz-39900Hz) and designate it as “low-band energy”.

In addition to these basic features, we also compute difference
features that measure their deviation with time. Thus the following
set of parameters is extracted from the input doppler signal. These
measurements are obtained once every 10ms, and are derived over
a 100ms analysis window.

• Peak Frequency (Fp)

• The Peak Frequency Difference (∆Fp)

• Full-Band Energy (Ef )

• Low-Band Energy (El)

• The Full-Band Energy Difference (∆Ef )

• The Low-Band Energy Difference (∆El)

These features are independent of acoustic disturbance, thus
immune to background noise. Figure 2 shows examples of the se-
lected feature, obtained from a signal recorded in noisy conditions.

5.2. Robustness Analysis

The robustness and estimation accuracy are the two most important
considerations for selecting features to detect voice activity. As
mentioned in the previous sections, mutual information is a useful
tool to determine the dependency of two signals.



The dependency of the feature (A) and the corresponding
voice activity labels (L) is investigated using the mutual informa-
tion (I(A, L)). The MI gives an indication of estimation accuracy.
The variation of MI in different environments (∆I(A, L)) mea-
sures the robustness of a feature. A lower value indicates greater
robustness. Table 3 lists the MI results between the extracted fea-
tures and voice activity labels in a variety of conditions.

From the results, we can conclude that the selected features are
very robust to background noise. Each of them will contributes to
the voice activity detection. Of the set, the peak frequency bin
difference is the most effective feature.

6. SVM CLASSIFIER

We perform the actual speech/non-speech classification of each
analysis frame of the signal using a support vector machine (SVM)
classifier. Support vector machines are known to provide good
classification performance in real-world classification problems
which typically involve data that can only be separated using a
nonlinear decision surfaces [10, 11].

We use the kernel based variant of the SVM classifier, for
which the decision function has the form

f(x) =

NX
i=1

αidiK(x, xi) + b (7)

whereN is the number of support vectors, andK(x, xi) is the
kernel function.K(x, xi), in this implementation, is a radial basis
function (RBF).

K(x, xi) = exp{−Ψ(|x− xi|2)} (8)

Since the voice activity detection is a binary decision classi-
fication problem, a soft margin classifier can be used to address
the problem of nonseparable data. Slack variables [10] are used to
relax the separation constraints:8<: xi • w + b ≥ +1− ξi, for di = +1

xi • w + b ≤ −1− ξi, for di = −1
ξi ≥ 0,∀i

(9)

wheredi are the class assignments,w represents the weight vector
defining the classifier,b is a bias term, andξi are the slack vari-
ables.

In our implementation, the support vectors are trained using
features extracted from a training set with hand-labeled voice ac-
tivity index. The binary class associated with each analysis frame
is the corresponding voice activity index.

7. EVALUATION

A small corpus of simultaneous speech and acoustic Doppler radar
signals was recorded at Mitsubishi Electric Research Labs. The
corpus includes two speakers speaking 30 TIMIT sentences under
five different noise environments: office, car, babble, competing
speech, and music. All signals were recorded in the presence of
background noise, i.e. the noise was not digitally added. The
boundaries of speech were hand labelled and the SNR was esti-
mated from the RMS signal values in the speech and non-speech
regions. The SNRs vary in a large range (-5dB to 30dB)

Two voice activity detectors were implemented based on the
acoustic speech signals only. One was the prior speech presence
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Fig. 3. Illustration of voice activity detection in babble noise
(SNR=0dB)

probability model with minimum statistics noise estimation, which
has been shown to be effective in preserving weak speech cues.
The other is an SVM classifier trained on the same database. We
simplified this model using speech energy features only derived
from a bank of four Mel-scaled filters. A preliminary SVM clas-
sifier combining the features from Doppler radar and speech was
also tested.

Figure 3 and Figure 4 demonstrate the behavior of two SVM
voice activity detectors based on the feature computed from the
output of the Doppler radar and speech respectively. The accuracy
results in a variety of noise environments are provided in Table 4.

Table 4 shows the frame-wise percentage accuracy of
speech/non-speech classification on speech corrupted to varying
levels by various noises. We observe that the SVM classifier,
based on the features of the Doppler signal, is very robust in noisy
environments, outperforming VAD classification based on speech
alone in most cases. The robustness of the Doppler based VAD is
apparent in that its performance degrades much more slowly with
increasing noise than VAD that is based on speech alone.

However in other situations the Doppler-based VAD is not as
accurate as that based on speech. The reason for this is simple -
people often move their mouths before they begin speaking, and
will move their mouths and faces under other conditions as well.
Also, the face and vocal apparatus remains relatively stationary
during long vowels, giving the impression of vocal inactivity. In
such situations, the Doppler radar by itself cannot determine if
speech is present. However, in many of these situations cues to
the presence of speech are available from the audio signal. Thus,
it may be expected that VAD performance can be further improved
if the Doppler measurements could be combined with those from
the speech signal, for voice activity detection. This hypothesis is
borne out by the results obtained when features from the speech
and Doppler signals were combined in the SVM classifier: Ta-
ble 4 shows that VAD performance obtained with a combination
of Doppler and speech signals is consistently superior to that ob-
tained with either of the two signals alone.
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Table 4. Accuracy of voice activity detectors
Noise Min. Stat SVM SVM SVM

Type SNR model Speech Radar Comb.
0dB 89.55 95.10 90.78 95.48

Office 10dB 90.47 95.47 90.37 95.23
20dB 93.81 96.49 92.63 97.72
AVG. 92.24 95.97 91.68 96.01
0dB 54.84 88.32 92.69 91.72

Car 10dB 67.45 90.21 92.22 93.01
20dB 83.58 93.45 90.77 95.03
AVG. 70.32 91.96 92.01 93.26
0dB 51.50 65.54 89.28 89.93

Babble 10dB 60.76 73.89 90.76 90.80
20dB 73.04 88.96 93.29 94.01
AVG. 65.84 78.90 91.95 92.43
0dB 57.02 57.53 93.37 91.59

Speech 10dB 62.72 73.34 92.99 92.86
20dB 74.67 85.97 93.74 94.86
AVG. 67.11 77.69 93.36 93.27
0dB 50.89 70.39 90.27 89.51

Music 10dB 54.32 77.92 93.13 93.89
20dB 63.39 86.23 92.74 94.12
AVG. 59.20 78.77 92.63 92.73

8. CONCLUSION

The proposed Doppler-radar-based VAD algorithm was observed
to be very robust in all noisy environments, particularly when
Doppler measurements were combined with measurements of the
speech signal. Dramatic improvements are seen particularly in low
SNR conditions. The proposed Doppler radar based sensor thus
promises to be a highly effective secondary sensor for voice activ-
ity detection.

The proposed acoustic Doppler radar provides data about the
motion of the face - a measurement that is not directly obtainable
from the speech signal itself. The information it provides is thus
complementary to that obtainable from the speech signal. Hence,
it may be expected that even if the basic speech signal based VAD
algorithm were to be improved significantly, its performance could
be further enhanced by combining it with the Doppler measure-
ments. Additionally, the Doppler measurements may be comple-
mentary to current secondary sensors such as GEMS and bone
conduction sensors, and their performance may also be further im-
proved by combining them with the Doppler sensor.

Finally, we have thus far only attempted to use the Doppler
measurements to improve voice activity detection. It stands to rea-
son that the improved voice activity detection can be translated
to improved signal enhancement as well. Doppler radar measure-
ments may also be useful secondary features for automatic speech
recognition. We will address these issues in future research.
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