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Abstract

Several important problems in computer vision such as

Shape from Shading (SFS) and Photometric Stereo (PS) re-

quire reconstructing a surface from an estimated gradient

field, which is usually non-integrable, i.e. have non-zero

curl. We propose a purely algebraic approach to enforce

integrability in discrete domain. We first show that enforc-

ing integrability can be formulated as solving a single lin-

ear system Ax = b over the image. In general, this system

is under-determined. We show conditions under which the

system can be solved and a method to get to those condi-

tions based on graph theory. The proposed approach is

non-iterative, has the important property of local error con-

finement and can be applied to several problems. Results on

SFS and PS demonstrate the applicability of our method.

1. Introduction

The notion of integrability arises whenever a surface has

to be reconstructed from a gradient field. In several core

computer vision problems such as Shape from Shading and

Photometric Stereo, an estimate of the gradient field is avail-

able. The gradient field is then integrated to obtain the de-

sired 2D surface (shape). However, the estimated gradient

field often has non-zero curl making it non-integrable. In

this paper, we address the problem due to curl and present

a method to enforce integrability. The approach is non-

iterative and has the important property that the errors due

to non-zero curl do not propagate across the image.

We present an algebraic approach where integrability is

enforced by finding a residual gradient field. Adding the

computed residual gradients to the specified gradients pro-

duces an integrable gradient field. Our main contributions

are as follows:

• We present a method to exploit the information con-

tained in the curl of the given non-integrable field. In

discrete domain, the residual gradient field and the curl

form a linear system which we use to achieve a better

reconstruction.

• When curl is non-zero at several pixels, the linear

system is potentially under-determined with more un-

knowns (residual gradient values) than the number of

equations (corresponding to known curl values). Us-

ing a graph analogy, we derive conditions under which

the residual field can be recovered and show a method

to achieve those conditions.

• Unlike least square approaches, our approach has the

property of local error confinement and the error in

reconstructed surface does not spread throughout the

gradient field. Due to its global nature, our method

is non-iterative compared to iterative techniques [9]

which may have convergence issues.

1.1. Related work

Researchers have addressed the issue of enforcing in-

tegrability typically specific to the problem at hand. In

Shape from Shading algorithms such as [17][8], integra-

bility was enforced as a constraint in the minimization rou-

tine. Frankot & Chellappa [6] enforce integrability by or-

thogonally projecting the non-integrable field on to a vector

subspace spanning the set of integrable slopes. However,

their method is dependent on the choice of basis functions.

Simchony et. al. [11] find the integrable gradient field clos-

est to the given gradient field in a least squares sense by

solving the Poisson equation. One can show that (see sec-

tion 2) their method ignores the information in the curl and

finds a zero-curl field which has the same divergence as the

given non-integrable field. The method also lacks the prop-

erty of error confinement. For a survey of SFS algorithms

see [16].

Photometric stereo [13][5] uses multiple images ob-

tained under different illumination directions to recover the

surface gradients. In [9], belief propagation in graphical

networks was used to enforce integrability for SFS and PS

problems. In [14], the integrability constraint was used to
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Figure 1. Photometric Stereo on Yale

database (a) 4 out of 64 input images (b)
Reconstructed depth map using SCS method
[11]. Global distortions are present (c) Curl
from estimated gradient field (d) Recon-
structed depth map using our method. Our
method exploits information in curl often ig-
nored in gradient reconstruction. This brings
in high gradients that are smoothed out in
SCS method. In addition, the reconstruction
has a local error confinement property so
that errors due to curl do not create global
distortions.

remove the ambiguity in the estimation of shape and albedo

from multiple images. Calibration information about the il-

lumination geometry is obtained by imposing integrability

constraint in [3]. In [18], the integrability constraint was

used along with rank constraints in a minimization routine

to estimate surface albedo and normals. Other examples in-

clude [4][15]. The idea of enforcing integrability has also

been used in flow field visualization [12][10] by decompos-

ing the given field into curl-free and divergence-free parts.

We show the effectiveness of our technique in the con-

text of the above two problems. The rest of the paper is

organized as follows. In Section 2, we formally state the in-

tegrability problem. Section 3 describes the discrete domain

formulation for enforcing integrability in terms of solving a

linear system. Section 4 provides a graph analogy, and de-

rive conditions under which the system can be solved. We

then show a method to reach these conditions. Results on

Shape from Shading and Photometric Stereo are presented

in Section 5.

2. Problem definition

Let S(x,y) be a 2D real valued scalar function defined on

a rectangular grid {x = 0, . . . ,W −1;y = 0, . . . ,H −1}. Let

(p0 = ∂S
∂x

,q0 = ∂S
∂y

) denote the integrable gradient field of

S. Given proper boundary conditions, the surface S can be

exactly recovered by integrating the gradient field (p0,q0)
without any error by solving a Poisson equation. Let div

denotes the divergence operator and curl denotes the curl

operator on gradient field (p,q), i.e.

L = div(p,q) =
∂p

∂x
+

∂q

∂y
= px +qy

C = curl(p,q) =
∂p

∂y
−

∂q

∂x
= py −qx

(1)

Let L0 and C0 denotes the divergence and curl of (p0,q0).
Thus C0 = 0. Often, an estimate of the gradient field (p,q)
is known, which is non-integrable. The goal is to integrate

the gradient field (p,q) to obtain the surface (shape).

A quick review of enforcing integrability using Sim-

chony, Chellappa and Shao’s (referred to as the SCS)

method described in [11] is as follows. Given a non-

integrable gradient field (p,q), the SCS method finds the

surface Ŝ which minimizes the following least square cost

function

J(Ŝ) = (Ŝx − p)2 +(Ŝy −q)2 (2)

The Euler-Lagrange equation gives the Poisson equation:

∇2Ŝ = div(p,q). The integrable field is found by dif-

ferentiating the estimated surface Ŝ. Thus (Ŝx, Ŝy) is the

corresponding integrable field. One should notice that

div(Ŝx, Ŝy) = ∂Ŝx

∂x
+

∂Ŝy

∂y
= ∇2Ŝ = div(p,q). Thus the SCS

method enforce integrability by finding a zero curl gradi-

ent field which has the same divergence as the given non-

integrable gradient field.

2.1. Curl-divergence space

One can visualize a two dimensional curl-divergence

space as shown in Figure 2. A vector in this space repre-

sents a gradient field. All integrable (zero-curl, irrotational)

gradient fields lie along the real (X) axis. All divergence

free (solenoidal) gradient fields lie along the imaginary (Y )

axis.

Let
−−→
OA1 denotes an integrable gradient field with di-

vergence L. Suppose the estimated gradient field is given

by
−−→
OA2 with divergence L1 and curl C1. The residual (er-

ror) gradient field is then given by
−−→
A1A2. As discussed

earlier, reconstruction using Poisson solver will give a so-

lution which has the same divergence as the given non-

integrable field
−−→
OA2. Thus the integrable field given by the

SCS method will be
−−→
OA3. It is important to note that the di-

vergence free part (curl) of
−−→
OA2 is completely ignored dur-

ing the reconstruction. The method that we propose tries to



Figure 2. The curl divergence space: A vector
in this space represents a gradient field. Vec-
tors along X axis (OA1) represents zero curl
(integrable) gradient fields. Usually a non-
integrable field OA2 is given as an estimate
of OA1. The residual gradient field is given
by A1A2. Enforcing integrability using Pois-
son reconstruction gives OA3 as the solution.
The proposed algorithm tries to estimate the
residual gradient field A1A2 using the infor-
mation in the curl to move from OA2 to OA1.

estimate the residual field
−−→
A1A2 using the curl to move from

−−→
OA2 to

−−→
OA1, thus giving a better estimate of the underlying

field.

2.2. Information in curl

When does the curl of a non-integrable field have infor-

mation about the divergence of the underlying integrable

field? Consider a very simple example: suppose due to

some physical process, the estimated gradient field (p,q)
is equivalent to the true gradient field rotated by an angle θ,

i.e. [
p

q

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

][
p0

q0

]
(3)

From (1), the curl and divergence of the estimated gradi-

ent field is

L =
∂

∂x
(p0 cos(θ)−q0 sin(θ))

+
∂

∂y
(q0 cos(θ)+ p0 sin(θ))

= L0 cos(θ)+C0 sin(θ) = L0 cos(θ)

C =curl(p,q) = −L0 sin(θ)

(4)

Thus, we see that the curl of the estimated gradient field

is directly related to the divergence of the true gradient field.

In fact at θ = π/2, the divergence will be zero all over the

image and all information about L0 is in the curl. Thus, the

Poisson reconstruction in that case will just depend on the

boundary conditions and will fail to reconstruct the under-

lying surface. However, if we define the magnitude of new

divergence field L̂ as

L̂ = (L2 +C2)1/2

then L̂ = L0 and the original surface can be recovered.

The above example may seem a bit far stretched but it

shows that there can be cases where the curl contains impor-

tant information about the underlying surface. In practical

scenarios however, one can’t expect to find analytic expres-

sions for the curl. Even if such equations may be known,

they might be extremely complicated to solve. Thus we

want to have an approach that does not depend on the ana-

lytical form of curl.

It is important to note that there can be cases where curl

does not provide any useful information. For example, if

noise is added to an integrable gradient field, the curl of the

resultant field is just the curl of the noise and is independent

of the underlying gradient field. However, in many prob-

lems such as SFS, PS etc., noise does not get added to the

gradients directly. Usually, the errors in estimating the gra-

dient field depends on the underlying surface. Thus the curl

can be expected to have information about the surface.

3. Enforcing integrability

We enforce integrability in discrete domain by formu-

lating the problem as solving a linear system. We use the

information in the curl of the given non-integrable field to

achieve better reconstruction. In discrete domain, the gradi-

ents of a surface S along x and y directions at any pixel (y,x)
are defined as simple forward differences

p(y,x) = S(y,x+1)−S(y,x)

q(y,x) = S(y+1,x)−S(y,x)
(5)

The equation for curl can be written in discrete domain as

(using (1))

C(y+
1

2
,x+

1

2
) = p(y+1,x)− p(y,x)+q(y,x)−q(y,x+1)

(6)

This correspond to the loop integral around a box of four

pixels. Note that the notation C(y+ 1
2
,x+ 1

2
) is used to em-

phasize that the curl value is for that particular loop. In

addition, the loop integral around any other bigger loop can

be written as linear combinations of these elementary loop

integrals and thus will not provide additional information.

3.1. Residual field and curl

Let (p,q) be the given non-integrable gradient field. One

can always write

(p,q) = (p0,q0)+(pε,qε) (7)

Thus

curl(p,q) = curl(p0,q0)+curl(pε,qε) = curl(pε,qε)

(8)

One can compute the curl given (p,q). Thus we wish to es-

timate the residual gradient field (pε,qε) given curl(p,q).



Once the residual gradient field is obtained, it can be sub-

tracted from the given gradient field to get an estimate of

(p0,q0). The following observations can be inferred from

(6)

§ 1. If curl is non-zero for a loop at (y + 1
2
,x +

1
2
), one or more of the following gradients {pε(y +

1,x), pε(y,x),qε(y,x),qε(y,x+1)} is non-zero.

§ 2. If the x gradient, pε(y,x) is non-zero, it affects the curl

at loops (y+ 1
2
,x+ 1

2
) and (y− 1

2
,x+ 1

2
) only.

§ 3. Similarly, if the y gradient, qε(y,x) is non-zero, it af-

fects the curl at loops (y+ 1
2
,x+ 1

2
) and (y+ 1

2
,x− 1

2
) only.

Suppose we know that the estimated x gradients are in

error in Kp locations and estimated y gradients are in er-

ror in Kq locations. If we do not have this information, for

example in SFS, we first compute the curl given the esti-

mated gradient field using (6). Then using §1, we find all

such gradients that can potentially be in error. Let x =[
p1

ε . . . p
Kp
ε ,q1

ε . . . q
Kq
ε

]T

denote the vector con-

taining all the erroneous gradients.

Now using §2 and §3, we find the loops for which (6)

can have a term corresponding to any of the erroneous

gradients in x. Let Kb be the number of all such loops

and
[

(y1
i + 1

2
,x1

i + 1
2
) . . . (y

Kb
i + 1

2
,x

Kb
i + 1

2
)

]
be those

loop locations.

For each such loop, we can write (6). In fact, for any

loop at (y+ 1
2
,x+ 1

2
), (6) can be written as

C(y+
1

2
,x+

1

2
) =

[
1 . . . −1 . . . 1 . . . −1

]
x

(9)

where the entries 1 and −1 occur according to posi-

tion of pε(y + 1,x), pε(y,x),qε(y,x),qε(y,x + 1) in vector

x and rest of the entries are zero. If any of pε(y +
1,x), pε(y,x),qε(y,x),qε(y,x+1) is not present is x, its cor-

responding row entry will be zero.

Stacking all such equations on top of each other one ob-

tains

b = Ax (10)

where b =
[

C(y1
i ,x

1
i ) . . . C(y

Kb
i ,x

Kb
i )

]T

denotes the

curl values. Thus the matrix A is a sparse matrix of

size Kb × (Kp + Kq). Each row of A is according to (6)

and has at most 4 non-zero values, two +1’s correspond-

ing to pε(y + 1,x),qε(y,x) and two −1’s corresponding to

pε(y,x),qε(y,x+1).

3.2. Rank considerations

In SFS, the curl will be non-zero almost everywhere.

This means that almost all of the estimated p and q values

are erroneous. However, the number of curl equations can

be at most the number of basic 4 pixel loops in the image.

For an image of size H×W , there will be W −1 loops along

each column and H−1 loops along each row. Thus the total

number of equations in Ax = b can be (H − 1)× (W − 1).
However, the sum of all the 4 pixel loops will be equal to the

loop integral around the boundary (which we assume is zero

due to Dirichlet boundary conditions). Thus one equation

will be dependent. Hence, the maximum number of inde-

pendent equations in Ax = b can be (H −1)× (W −1)−1.

On the other hand, the maximum number of unknowns

(gradient values) will be approximately twice the number of

pixels in the image. Thus, in general, we expect the number

of unknowns (gradients) to be much larger than the number

of known curl equations and hence Ax = b will be under-

determined. To solve the system, the rank of A must be

equal to the number of unknowns Kp +Kq. Instead of solv-

ing for a minimum norm least square solution (as in Poisson

solver), we propose to reduce the number of unknowns. In-

tuitively, the gradient values corresponding to the low curl

loops will not be in much error and can be considered error

free. But one would like to make that assumption at mini-

mum number of places to recover the maximum number of

erroneous gradients. In the next section, we give a graph

analogy to derive a formal way for reducing the number of

unknowns. Notice that Kb depends on the which p’s and

q’s are in error and thus Kb can change when reducing the

number of unknowns.

4. Graph analogy

We now show when the system of equation Ax = b is

solvable using graph theory. The image is represented as a

graph where nodes corresponds to pixels and edges corre-

sponds to gradients. If the edges corresponding to non-zero

residual gradients are considered to be broken, the graph

will not remain as a single connected piece. Intuitively, if

we assume some edges to be known such that the graph be-

comes connected, Ax = b can be solved. The idea is to find

a minimal set of such edges. Graph analogy has also been

used for residue-cut algorithm [7] for phase unwrapping.

We assume Dirichlet boundary conditions for all the

problems. In SFS, often the use of gradient space is cri-

tiqued as it is not well-defined at the boundary but as noted

in [6], for discrete data p and q are bounded for all practical

purposes.

4.1. Defining a graph

We define an undirected graph G = (V,E) on the image

plane. Each node in the graph correspond to a pixel in the

image (including boundary nodes). Each node in the inte-

rior (not on boundary) has 4 edges, connecting it to nodes

(pixel) in north, south, east, west direction. For nodes on

boundary, those at the corners of the image have 2 edges

and rest have 3 edges each. Each edge in the graph between

two nodes represent the gradient p or q between the nodes.



With this configuration, for a H×W image, one have W −1

edges (or x gradients) for each row and H − 1 edges (or

y gradient) for each column. Figure 3(a) shows a sample

graph.

Thus with the above terminology, given an estimated

non-integrable gradient field, one knows the value of the

graph edges and the value of graph nodes at the boundary

points (from Dirichlet conditions). The goal is to integrate

the gradient field or to find the value of nodes (pixels) in the

interior of the image.

If the estimated gradient p or q is erroneous at a node,

we break the corresponding edge in the graph. Thus, when

curl is non-zero everywhere, all the edges in the graph (ex-

cept those between boundary points) will be broken. One

should note that we assume Dirichlet boundary conditions

or that the pixel values are know at the boundary. This im-

plies that the gradients along the boundary (top/bottom row,

first/last column) are always known without any error. Thus

a configuration such as Figure 3(b) cannot happen.

If the broken edges are such that graph remains con-

nected, the corresponding system of equation Ax = b can

be solved. If however, the graph breaks into n pieces, rank

deficit of A is equal to n− 1, i.e. rank(A) = (Kp + Kq)−
(n−1)

Here is an intuitive argument. If the graph remains con-

nected, one can reach any node of the graph starting from

some boundary node. Thus for each node (pixel), one can

always find at least one integration path from some bound-

ary pixel. Thus, the node value can be obtained for all the

pixels. This in turn implies that the value of broken edges

can be obtained. Thus the system Ax = b has to be full rank.

If however the graph breaks into n pieces, the minimum

number of edges that are needed to make it connected is

n−1. Thus if we have known the edge value of n−1 more

edges, we could have solved the system. Thus the rank of

A will be n− 1 less than required (Kp + Kq). Figures 3(c)

and 3(d) show an example.

Which edges to join How can we find which edges to

join to make the system solvable ?. Two criteria need to be

satisfied

1. A minimum number of edges should be joined so that

the maximum number of erroneous edges could be cor-

rected.

2. Edges joined first should be along the loops with low

curl values.

To meet the above criterions, we define an edge weight

for each edge. For edges corresponding to the x gradient

between the nodes Vy,x+1 and Vy,x and corresponding to the y

gradient between the nodes Vy,x and Vy+1,x, the edge weight

is defined as the curl value of the loop. We then find that

minimal set of edges which connects the graph and have the

minimum total weight.

4.2. Algorithm Outline

The complete algorithm can be specified as follows.

Given a non-integrable gradient field (p,q),

1. Find curl all over the image. Form the image graph.

For each edge in graph, assign a weight as described in

the previous paragraph. Put all the boundary nodes in

set B2.

2. Identify nodes corresponding to loops where curl is

greater than some threshold (τ = 10−2). Put all such

nodes in set B1 if it is not a boundary node. Put rest of

the nodes in set B2. Note that when curl is non-zero all

over, B2 will contain just the boundary nodes and B1

will contain the rest of the nodes.

3. Break all the edges connecting any node in B1 to any

node in B2. Also break all the edges between the nodes

in B1.

4. Finding minimal set of edges to join

While B1 is not empty

(a) Find the shortest path from any node in B2 to a

node in B1. Let Vi1, j1 be the node in B1 and Vi2, j2

be the node in B2 corresponding to this path.

(b) Remove Vi1, j1 from B1 and put in B2.

(c) Join the edge connecting Vi1, j1 and Vi2, j2 .

5. Now the graph will be connected. For all the edges

still broken, form the equation Ax = b. Solve for x

and subtract x from the corresponding locations in the

given gradient field.

6. Now we have obtained an integrable gradient field.

The underlying 2D surface can be obtained by inte-

grating using multi-grid or Poisson solvers.

5. Applications

We present results on Shape from Shading and Photo-

metric Stereo and show that our algorithm gives signifi-

cantly better solutions. The approach is however not re-

stricted to applications shown and can be used for other

imaging applications which requires gradient field recon-

struction such as [1]. To evaluate the quality of the re-

construction, we define the percentage depth error between

the true depth map Zt and the estimated depth map Zest

as 100 ∗∑((Zt −Zest)/Zt)
2
, where the summation is over

all the pixels. In all experiments, the curl of the esti-

mated gradient field is shown as gray-color coded image

(white=positive, black=negative, gray=0).



(a) (b) (c) (d)

Figure 3. Graph analogy and rank considerations (a) A sample graph on a 8×8 grid. Lines denotes
edges and dots denotes nodes. (b) A configuration such as this cannot happen as boundary edges
are known (c) A particular configuration of broken edges where the graph is broken into n = 4 parts.
Kp = 18, Kp = 16, total number of broken links = 34, rank(A) = 31. rank deficit = 34− 31 = 3 = n− 1 (d)
If 3 more links are known to connect the graph (dashed edges), number of unknowns reduces to
31 = rank(A)

5.1. Photometric Stereo

For photometric stereo, we present synthetic results us-

ing the Mozart depth map and on real data using Yale face

database B (YaleB01P00). For Mozart, five images were

generated assuming Lambertian reflectance model using the

depth map. For Yale database, all 64 images correspond-

ing to the frontal pose for the first subject were used. We

assume that the light source directions are known. A sim-

ple least squares approach was used to estimate the surface

normal (nx,ny,nz) at each pixel. The gradient field was ob-

tained as p = −nx/nz, q = −ny/nz.

Figure 4(a) shows 4 of the 5 input images generated us-

ing the Lambertian model for Mozart whose true depth map

is shown in Figure 4(e). Figure 4(b) shows the curl of the

estimated gradient field. Figure 4(e)(center) shows the re-

construction from the initial estimated gradient field using

the SCS method. As described in section 4.2, we find those

edges which can potentially give rise to non-zero curl val-

ues. Nodes connecting these edges (set B1) are shown in

Figure 4(c) in white. It is clear that the resultant graph will

not be connected. We then find the minimal set of edges

to join so as to connect the graph. Figure 4(d) shows the

final configuration of the connected edges. Note that in this

graph, all nodes can be reached using the edges present in

the graph. For the edges not present between the nodes,

the system of equation Ax = b was solved. The gradient

field was then updated using the x values. Figure 4(e) shows

the reconstruction using curl corrected gradient field which

is much better than using the SCS method. The percent-

age depth error between the true depth map and the recon-

structed depth map was 4.26 using the SCS method and 2.7
using our method.

Figure 1(a) shows 4 (out of 64) input images for one

of the subjects in frontal pose from Yale database. Fig-

ure 1(b) shows the curl of the estimated gradient field. Fig-

ures 1(c) and 1(d) shows the reconstruction using the SCS

method and using our method. Note that the reconstruction

using our method is much better especially along the face

boundaries. SCS method can have global distortions since

the gradients at any location affect the reconstruction all

over the image. In contrast, our method can locally confine

errors, does not have any global distortions and all features

(sharp gradients) are preserved. Also notice the transitions

between right cheek and back plane which is smoothed out

in the reconstruction using the SCS method.

5.2. Shape from Shading

For shape from shading, we implemented the algorithm

by Brooks and Horn [2] and extended it to incorporate

the proposed integrability method. This algorithm assumes

a Lambertian reflectance model for the surfaces. In this

method, at each iteration, new estimates of the surface gra-

dients

[
p̂

q̂

]

k+1

are obtained from the previous estimates

[
p̂

q̂

]

k

as

[
p̂

q̂

]

k+1

=

[
̂̂p
̂̂q

]

k

+λ(I −R)

[
Rx

Ry

]
(11)

where ̂̂pk and ̂̂qk denotes the smoothed values of p̂k and p̂k

respectively, I is the input image, R is the reflectance map

and Rx, Ry denotes its derivatives. We impose integrability

as follows. At each iteration, we first find the new update

using the above equation. Then we find the integrable field

using our method and use the integrable field in the next

iteration.

Figure 5 shows synthetic example for Vase and real ex-

ample for the Lena image. For vase, we use the illumina-

tion direction (0.05,0.05,1) to generate the image using a



(a) (b) (c) (d)

(e)

Figure 4. Photometric Stereo for Mozart (a) Sample images (b) Curl values for initial estimated gra-
dient field (c) Initial nodes in set B1 (section 4.2 step 3) (d) Final image graph which is connected.
Nodes are represented by dots and edges by lines. Edges not present can be solved for by form-
ing Ax = b (e) Original depth map, Reconstructed surface using the SCS method and using proposed
algorithm from updated gradient field.

Lambertian reflectance model. For Lena, the illumination

direction (1.5,0.866,1) was used as suggested in [16]. For

both examples, 50 iterations of Brooks & Horn algorithm

were performed. Figures 5(b) and 5(d) compares the recon-

structed surfaces using the SCS method and the proposed

method. Note that in vase image, enforcing integrability us-

ing the SCS method does not properly maintains the bound-

aries of the object, whereas in the reconstruction using our

method, the boundaries are well maintained. The percent-

age depth errors using the SCS method and our method were

183.0 and 87.6 respectively. For the Lena image, a better

visual reconstruction is obtained as shown in Figure 5(d).

6. Conclusions

Discussions: The only tunable parameter in our algo-

rithm is the threshold τ for deciding whether a loop is curl

free or not. With increasing τ, more gradients will be used

in the estimation and the solution will move towards the

solution given by the SCS method. As τ is decreased, we

selectively start choosing gradients for integration. Thus

one can have a tradeoff between smoothness and local error

confinement by adjusting this parameter.

We have proposed a method for surface reconstruc-

tion from gradients for problems commonly encountered in

Shape from Shading and Photometric Stereo. We presented

an algebraic method for enforcing integrability. Our ap-

proach corrects for the curl of the given non-integrable gra-

dient field by solving a linear system. Using a graph anal-

ogy, we derived conditions under which this system can be

solved. Our method is non-iterative and has the important

property that the errors due to non-zero curl do not propa-

gate across the surface. In comparison with conventional

methods such as the SCS method, the extra computation

cost for our approach is in determining the minimal set of

edges to construct a connected graph. However, the worst

case computational expense corresponds to finding the min-

imum spanning tree of the image graph for which standard

algorithms are available.
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