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Abstract

We propose a Bayesian learning method to capture
the background statistics of a dynamic scene. We model
each pixel as a set of layered normal distributions that
compete with each other. Using a recursive Bayesian
learning mechanism, we estimate not only the mean
and variance but also the probability distribution of the
mean and covariance of each model. This learning al-
gorithm preserves the multimodality of the background
process and is capable of estimating the number of re-
quired layers to represent each pixel.

1 Introduction

Segmentation of the moving regions, so called as
foreground, from the static part of a scene, commonly
named as background, is one of the most fundamen-
tal tasks in computer vision with a wide spectrum of
applications from compression to scene understanding.

A simple approach for detecting foreground regions
in stationary camera setups is to select a reference
frame in which no target objects are visible, and sub-
tract the observed frames from this reference image.
Although this task looks like fairly simple, in real world
applications this approach rarely works. Usually back-
ground is never static and varies by time due to illu-
mination changes, camera noise, shadows, etc.

Earlier methods applied simple prediction filters to
adapt the background pixel intensities. In [7] Kalman
filtering is used to model background dynamics. Simi-
larly Wiener filter is used in [11] to make a linear pre-
diction of the pixel intensity values, given the pixel his-
tories. An alternative approach models the probability
distribution of pixel intensities. This approach ignores
the order in which observations are made and focuses
on the distribution of the pixel intensities. In [12], a
single Gaussian model is used per pixel and the param-
eters are updated by alpha blending. Unfortunately,
these approaches fail in case the distribution of the
background color values do not fit into a single model.

Mixture models were proposed to handle the back-
grounds that exhibit multimodal characteristics. A
mixture of three Gaussians corresponding to road, ve-
hicle and shadow pixels are defined in [2] for a traffic

surveillance application. Likewise, Stauffer and Grim-
son [10] proposed to update the model parameters of
a mixture of k Gaussian distributions using an online
Expectation Maximization (EM) algorithm. In [5] and
[6] integration of gradient information is suggested as
another feature of the multiple models. Although mix-
ture of Gaussian models can converge to any arbitrary
distribution provided enough number of components,
this is computationally not feasible for real-time ap-
plications. Another approach that approximates the
probability distribution of a multimodal background is
the nonparametric kernel density estimation [1]. This
method keeps samples of intensity values per pixel and
uses these samples to estimate the density function.
Background subtraction is performed by thresholding
the probability of observed samples. In [9], motion
information is used to model dynamic scenes. One ma-
jor disadvantage of the nonparametric approaches is
that they require large amount of memory to keep the
previous measurements. Besides, they have very high
computation complexities, which is proportional to the
size of the temporal windows, making them infeasible.

In this paper, we describe a Bayesian approach to
per pixel background modeling. We model each pixel
as layered normal distributions. Recursive Bayesian
estimation is performed to update the background pa-
rameters. Proposed update algorithm preserves multi-
modality of the background model and the embedded
confidence score determines the number of necessary
layers for each pixel.

2 Bayesian Background

Our background model is most similar to adaptive
mixture models [10] but instead of mixture of Gaus-
sian distributions, we define each pixel as layers of 3D
multivariate Gaussians. Each layer corresponds to a
different appearance of the pixel. We perform our op-
erations in the RGB color space.

Using Bayesian approach, we are not estimating the
mean and variance of the layer, but the probability dis-
tributions of mean and variance. We can extract sta-
tistical information regarding to these parameters from
the distribution functions. For now, we are using ex-
pectations of mean and variance for change detection,
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and variance of the mean for confidence.
Prior knowledge can be integrated to the system eas-

ily with prior parameters. Due to computation of full
covariance matrix, feature space can be modified to
include other information sources, such as motion in-
formation, as discussed in [9].

Our update algorithm maintains the multimodailty
of the background model. At each update, at most one
layer is updated with the current observation. This as-
sures the minimum overlap over layers. We also deter-
mine how many layers are necessary for each pixel and
use only those layers during foreground segmentation
phase. This is performed with an embedded confidence
score. Details are explained in the following sections.

2.1 Layer Model

Data is assumed to be normally distributed with
mean µ and covariance Σ. Mean and variance are as-
sumed unknown and modeled as random variables [3,
p.87-88]. Using Bayes theorem joint posterior density
can be written as:

p(µ,Σ|X) ∝ p(X|µ,Σ)p(µ,Σ). (1)

To perform recursive Bayesian estimation with the
new observations, joint prior density p(µ,Σ) should
have the same form with the joint posterior density
p(µ,Σ|X). Conditioning on the variance, joint prior
density is written as:

p(µ,Σ) = p(µ|Σ)p(Σ). (2)

Above condition is realized if we assume inverse
Wishart distribution for the covariance and, condi-
tioned on the covariance, multivariate normal distri-
bution for the mean. Inverse Wishart distribution is a
multivariate generalization of scaled inverse-χ2 distri-
bution. The parametrization is

Σ ∼ Inv-Wishartυt−1(Λ
−1
t−1) (3)

µ|Σ ∼ N(θt−1,Σ/κt−1). (4)

where υt−1 and Λt−1 are the degrees of freedom and
scale matrix for inverse Wishart distribution, θt−1 is
the prior mean and κt−1 is the number of prior mea-
surements. With these assumptions joint prior density
becomes

p(µ,Σ) ∝ |Σ|−((υt−1+3)/2+1)× (5)

e

(
− 1

2 tr(Λt−1Σ−1
)−κt−1

2 (µ−θt−1)
TΣ−1

(µ−θt−1)
)

for three dimensional feature space. Let
this density be labeled as normal-inverse-
Wishart(θt−1,Λt−1/κt−1; υt−1,Λt−1). Multiplying

prior density with the normal likelihood and arranging
the terms, joint posterior density becomes normal-
inverse-Wishart(θt,Λt/κt; υt,Λt) with the parameters
updated:

υt = υt−1 + n κn = κt−1 + n (6)

θt = θt−1
κt−1

κt−1 + n
+ x

n

κt−1 + n
(7)

Λt = Λt−1 +
n∑

i=1

(xi − x)(xi − x)T +

n
κt−1

κt
(x− θt−1)(x− θt−1)T (8)

where x is the mean of new samples and n is the num-
ber of samples used to update the model. If update
is performed at each time frame, n becomes one. To
speed up the system, update can be performed at regu-
lar time intervals by storing the observed samples. Dur-
ing our tests, we update one quarter of the background
at each time frame, therefore n becomes four. The new
parameters combine the prior information with the ob-
served samples. Posterior mean θt is a weighted av-
erage of the prior mean and the sample mean. The
posterior degrees of freedom is equal to prior degrees
of freedom plus the sample size. System is started with
the following initial parameters:

κ0 = 10, υ0 = 10, θ0 = x0, Λ0 = (υ0−4)162I (9)

where I is the three dimensional identity matrix.
Integrating joint posterior density with respect to Σ

we get the marginal posterior density for the mean:

p(µ|X) ∝ tυt−2(µ|θt,Λt/(κt(υt − 2))) (10)

where tυt−2 is a multivariate t-distribution with υt− 2
degrees of freedom.

We use the expectations of marginal posterior distri-
butions for mean and covariance as our model parame-
ters at time t. Expectation for marginal posterior mean
(expectation of multivariate t-distribution) becomes:

µt = E(µ|X) = θt (11)

whereas expectation of marginal posterior covariance
(expectation of inverse Wishart distribution) becomes:

Σt = E(Σ|X) = (υt − 4)−1Λt. (12)
Our confidence measure for the layer is equal to one

over determinant of covariance of µ|X:

C =
1

|Σµ|X|
=

κ3
t (υt − 2)4

(υt − 4)|Λt|
. (13)

If our marginal posterior mean has larger variance,
our model becomes less confident. Note that variance
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of multivariate t-distribution with scale matrix Σ and
degrees of freedom υ is equal to υ

υ−2Σ for υ > 2.
System can be further speed up by making inde-

pendence assumption on color channels. Update of full
covariance matrix requires computation of nine param-
eters. Moreover, during distance computation we need
to invert the full covariance matrix. To speed up the
system, we separate (r, g, b) color channels. Instead of
multivariate Gaussian for a single layer, we use three
univariate Gaussians corresponding to each color chan-
nel. After updating each color channel independently
we join the variances and create a diagonal covariance
matrix:

Σt =

 σ2
t,r 0 0
0 σ2

t,g 0
0 0 σ2

t,b

 . (14)

In this case, for each univariate Gaussian we assume
scaled inverse-χ2 distribution for the variance and con-
ditioned on the variance univariate normal distribution
for the mean.

2.2 Background Update

We initialize our system with k layers for each pixel.
Usually we select three-five layers. In more dynamic
scenes more layers are required. As we observe new
samples for each pixel we update the parameters for
our background model. We start our update mecha-
nism from the most confident layer in our model. If
the observed sample is inside the 99% confidence in-
terval of the current model, parameters of the model
are updated as explained in equations (6), (7) and (8).
Lower confidence models are not updated.

For background modeling, it is useful to have a for-
getting mechanism so that the earlier observations have
less effect on the model. Forgetting is performed by re-
ducing the number of prior observations parameter of
unmatched model. If current sample is not inside the
confidence interval we update the number of prior mea-
surements parameter:

κt = κt−1 − n (15)

and proceed with the update of next confident layer.
We do not let κt become less than initial value 10. If
none of the models are updated, we delete the least con-
fident layer and initialize a new model having current
sample as the mean and an initial variance (9). The
update algorithm for a single pixel can be summarized
as follows.

Given: New sample x, background layers
{(θt−1,i,Λt−1,i, κt−1,i, υt−1,i)}i=1..k

Sort layers according to confidence measure de-
fined in (13). i← 1.

while i < k
Measure Mahalanobis distance:
di ← (x− µt−1,i)T Σ−1

t−1,i(x− µt−1,i).
if sample x is in 99% confidence interval

then update model parameters accord-
ing to equations (6), (7), (8) and
stop.

else update model parameters accord-
ing to equation (15).

i ← i + 1
Delete layer k, initialize a new layer having param-
eters defined in equation (9).

With this mechanism, we do not deform our mod-
els with noise or foreground pixels, but easily adapt to
smooth intensity changes like lighting effects. Embed-
ded confidence score determines the number of layers
to be used and prevents unnecessary layers. During
our tests usually secondary layers corresponds to shad-
owed form of the background pixel or different colors
of the moving regions of the scene. If the scene is uni-
modal, confidence scores of layers other than first layer
becomes very low.

2.3 Foreground Segmentation

Learned background statistics is used to detect the
changed regions of the scene. Number of layers re-
quired to represent a pixel is not known beforehand so
background is initialized with more layers than needed.
Using the confidence scores we determine how many
layers are significant for each pixel. We order the lay-
ers according to confidence score (13) and select the
layers having confidence value greater than the layer
threshold Tc. We refer to these layers as confident lay-
ers. Note that, Tc is dependent on the covariance of
mean of the pixel so it is dependent on color range of
the pixel. We perform our operations in 0-255 color
range and select Tc=1.0. For different color ranges Tc

should be modified.
We measure the Mahalanobis distance of observed

color from the confident layers. Pixels that are out-
side of 99% confidence interval of all confident layers
of the background are considered as foreground pixels.
Finally, connected component analysis is performed on
foreground pixels.

3 Shadow Classifier

Shadow classifier evaluates each foreground pixel
and decides whether it is a shadow pixel or belongs
to an object. To find foreground pixels, we measure
the Mahalanobis distance between the the pixel color
and the mean values of confident background layers.
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Figure 1. Weak shadow is defined as a conic volume
around the corresponding background color of pixel.

Pixels that are outside of 99% confidence interval of
all confident layers of the background are considered
as foreground pixels.

First, we determine whether a pixel is a possible
shadow pixel by evaluating the color variation as in [4].
We assume that shadow decreases the luminance and
changes the saturation, yet it does not affect the hue.
The projection of the color vector to the background
color vector gives us the luminance change h

h = |I(p)| cos φ (16)

where φ is the angle between the background B∗
t (p) and

It(p). We define a luminance ratio as r = |B∗
t (p)|/h.

We compute a second angle φB between the B∗
t (p) and

the white color (1, 1, 1). For each possible foreground
pixel obtained, we apply the following test and classify
the pixel as a shadow pixel if it satisfies both of the
conditions

φ < min(φB , φ0) , r1 < r < r2 (17)

where φ0 is the maximum angle separation, r1 < r2

determines maximum allowed darkness and bright-
ness respectively. Thus, we define shadow as a conic
around the background color vector in the color space
(Fig. 1). Those pixels that satisfy the above conditions
are marked as possible shadow pixels, the rest remains
as possible foreground.

At the second stage, we refine the shadow pixels by
evaluating their local neighborhood. If the illumination
ratio of two shadow pixels are not similar than they
assigned as unclassified. Then, inside a window the
number of foreground C, shadow S, and unclassified
pixels U are counted for the center pixel, and following
rules are applied iteratively: (C > U)∧(C > S)→ C,
(S >U)∧(S >C)→S, and else U . The shadow removal
mechanism is proved to be effective and adjustable to
the different lighting conditions.

M-1 M-2 M-3 M-4 M-5
Num. 10000 8000 3000 2000
Mean 0.200 0.600 0.300 0.800

Real Std. 0.015 0.030 0.050 0.050
Mean 0.203 0.203 0.599 0.599 0.938
Std. 0.008 0.008 0.011 0.011 0.063

EM Conf. 0.377 0.377 0.122 0.122 0.011
Mean 0.200 0.599 0.302 0.800 0.938
Std. 0.014 0.027 0.045 0.062 0.063

Bayes Conf. 0.399 0.382 0.108 0.108 0.001

Table 1. Mixture of four Gaussians.

4 Comparison with Online EM

Although our model looks similar to Stauffer’s
GMM’s [10], there are major differences. In GMM’s,
each pixel is represented as a mixture of Gaussian dis-
tribution and parameters of Gaussians and mixing co-
efficients are updated with an online K-means approx-
imation of EM. The approach is very sensitive to ini-
tial observations. If the Gaussian components are im-
properly initialized, every component eventually con-
verges to the most significant mode of the distribution.
Smaller modes nearby larger modes are never detected.
We model each pixel with multiple layers and perform
recursive Bayesian learning to estimate the probability
distribution of model parameters. We interpret each
layer as independent of other layers, giving us more
flexibility.

To demonstrate the performance of the algorithm,
mixture of 1D Gaussian data with uniform noise is gen-
erated. First data set consists of 12000 points cor-
rupted with 3000 uniform noise samples and second
data set consists of 23000 points corrupted with 10000
uniform noise samples. We assume that we observe the
data in random order. We threat the samples as ob-
servations coming from a single pixel and estimate the
model parameters with our approach and online EM
algorithm. One standard deviation interval around the
mean for actual and estimated parameters are plot on
the histogram, in Fig. 2. Results show that, in online
EM, usually multimodality is lost and models converge
to the most significant modes. With our method, mul-
timodality of the distribution is maintained. Another
important observation is, estimated variance with on-
line EM algorithm is always much smaller than the
actual variance. This is not surprising because the up-
date is proportional to the likelihood of the sample, so
samples closer to the mean become more important.

Normalized confidence scores are shown in the bot-
tom rows of each method in Table 1. Our confidence
score is very effective in determining the number of
necessary layers for each pixel. Although we estimate
the model parameters with five layers, it is clear from
our confidence scores that how many layers are effec-
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Figure 2. Left: Histograms of Gaussian data corrupted with uniform noise, Middle: Estimation results using
conventional EM algorithm, Right: Using Bayesian update. As visible, EM fails to detect correct modes. (Upper
row: 2-modes, lower row: 4-modes simulations)

tive. There is a big gap between the significant and
redundant layers.

Real data results are presented in Figure 3 where the
first sequence is a traffic sequence with heavy shadows
and the second sequence is a dynamic outdoor scene. In
the first sequence, first and second layers of our back-
ground corresponds to the original and shadowed ver-
sion of the background. The locations where most of
the cars move have higher variances, so usually they are
less confident. Those pixels are shown in red. First and
second layers converged to the most significant mode
in online EM algorithm.

5 Performance Evaluation using VSSN
2005 Datasets

We made an initial evaluation of the proposed
foreground-background detection method as given in
Table 2 using the RGB color space (We observed that
the accuracy does not change for the XYZ color space
and it drops in case we use the HSV or Lab color
spaces).

We computed four performance metrics, namely av-
erages and maximums of false alarms and false misses,
that are provided at the VSSN-Challenge web site. We

Bayesian Li’s

Ave False Alarm 4 3
Ave False Miss. 244 858
Max False Alarm 167 119

Video1 Max False Miss. 856 3452

Ave False Alarm 0 3
Ave False Miss. 186 361
Max False Alarm 6 61

Video2 Max False Miss. 786 1641

Ave False Alarm 261 282
Ave False Miss. 381 385
Max False Alarm 2135 4302

Video3 Max False Miss. 1902 2049

Ave False Alarm 284 190
Ave False Miss. 616 1007
Max False Alarm 2192 3470

Video4 Max False Miss. 1875 3632

Table 2. Detection Results using VSSN Datasets.

also tested the implementation of the Li’s method [8]
as given at the same site.

Our results show that the proposed method achieves
much lower false alarms and false misses at the same
time. Our maximum false alarms and false misses are
also much lower than the Li’s method.
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(a)

(b) (c)

Figure 3. Traffic video with heavy shadows. (a)
Original sequence. (b)Most confident two layers with
recursive Bayesian learning. (c) Most confident two
layers with online EM. With recursive Bayesian learn-
ing, we are able to model the shadows as the second
layer of the scene whereas in EM first and second
layers converge to most significant mode.
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