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Abstract

Wide-area context awareness is a crucial enabling technology for next generation smart buildings
and surveillance systems. It is not practical to cover an entire building with cameras, however it is
difficult to infer missing information when there are significant gaps in coverage. As a solution,
we advocate a class of hybrid perceptual systems that builds a comprehensive model of activity
in a large space, such as a building, by merging contextual information from a dense network
of ultra-lightweight sensor nodes with video from a sparse network of high-capability sensors.
In this paper we explore the task of automatically recovering the relative geometry between a
pan-tilt-zoom camera and a network of one-bit motion detectors. We present results for the
recovery of geometry alone, and also recovery of geometry jointly with simple activity models.
Because we don’t believe a metric calibration is necessary, or even entirely useful for this task,
we formulate and pursue the novel goal we term functional calibration. Functional calibration
is the blending of geometry estimation and simple behavioral model discovery. Accordingly,
results are evaluated in terms of the ability of the system to automatically foveate targets in a
large, non-convex space, not in terms of pixel reconstruction error.
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ABSTRACT
Wide-area context awareness is a crucial enabling technol-
ogy for next generation smart buildings and surveillance sys-
tems. It is not practical to cover an entire building with
cameras, however it is difficult to infer missing information
when there are significant gaps in coverage. As a solution,
we advocate a class of hybrid perceptual systems that builds
a comprehensive model of activity in a large space, such as
a building, by merging contextual information from a dense
network of ultra-lightweight sensor nodes with video from
a sparse network of high-capability sensors. In this paper
we explore the task of automatically recovering the relative
geometry between a pan-tilt-zoom camera and a network of
one-bit motion detectors. We present results for the recov-
ery of geometry alone, and also recovery of geometry jointly
with simple activity models. Because we don’t believe a met-
ric calibration is necessary, or even entirely useful for this
task, we formulate and pursue the novel goal we term func-
tional calibration. Functional calibration is the blending of
geometry estimation and simple behavioral model discovery.
Accordingly, results are evaluated in terms of the ability of
the system to automatically foveate targets in a large, non-
convex space, not in terms of pixel reconstruction error.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Motion; I.2.10
[Vision and Scene Understanding]: Video analysis; I.4.8
[Scene Analysis]: Sensor fusion; I.2.9 [Robotics]: Sen-
sors; C.3 [Special-purpose and application-based sys-
tems]: Real-time and embedded systems

General Terms
Sensor Networks, Video Surveillance, Adaptive Systems
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1. INTRODUCTION
The next generation of smart buildings will manage se-

curity, efficiency, comfort, and safety with help of global
context gleaned from a network of sensors. It is not feasible
to completely cover a building with high-capability sensors,
such as cameras. Nor is it desirable to incur the significant
complexity and brittleness that often comes with attempts
to infer the data lost by leaving large tracks of a building
completely unobserved. As a result, building-wide context
will be sensed by a heterogeneous network of sensors that
will include high-cost, high-capability nodes such as pan-
tilt-zoom (PTZ) cameras, but will be dominated by swarms
of low-cost, low-capability sensors that will provide most of
the coverage. The manual calibration of such a network
would be prohibitively expensive even if it were necessary
only once. Buildings are continually reconfigured over their
lifetime to support new uses, so a one-time calibration is al-
most certainly insufficient, and therefore any comprehensive
context awareness system should continually adapt to these
changes.

This paper examines the task of automatically adapting
a PTZ camera to a network of one-bit motion detectors,
for the purpose of creating a system that can automati-
cally foveate the sources of events generated by the motion-
detector network. The classical solution involves a specialist
performing a labor-intensive site survey[17]. Another ap-
proach is to generate a known, or very easy to detect pat-
tern of motion: such as having a person or robot navigate
an empty space while following a pre-determined path[16].
These approaches place severe constraints on the system.
We advocate a system that places as few constraints on
the building inhabitants as possible. By accepting uncon-
strained motion as input we ensure that our method will be
acceptable to the widest possible set of situations; we reduce
cost by eliminating the need for robots, or for a specialist to
visit the site; and we allow the system to be as responsive as
possible to changes in the space by utilizing, on a daily ba-
sis, the constant flow of information provided by the motion
of the inhabitants.

We achieve this flexibility and generality by adopting a
functional definition of calibration. We seek to recover a
description of the relationship between the camera and the
environment that will allow us to make the best use of the
PTZ camera. The classical solution estimates a metric cal-
ibration in the form of a map, tracks targets on the map,
makes predictions, and controls the PTZ to acquire the de-
sired images. As opposed to this series of marginal solutions



(which incur the overhead of performing all the marginal op-
erations, such as target tracking at runtime) , we propose a
joint solution that directly estimates the objective: a policy
that allows the PTZ camera to capture high-quality video
of targets.

2. RELATED WORK
Over the past ten years there has been some interest in

the calibration of camera networks in general, and in partic-
ular those containing pan-tilt-zoom cameras[5, 15, 3, 14, 11].
This interest was enhanced by the DARPA Video Surveil-
lance and Monitoring initiative. Most of this work has fo-
cused on classical calibration between the cameras and some
fixed coordinate system.

Camera network geometry discovery has also been ex-
ploited indirectly in Khan[8], where the objective is to find
the pairwise camera field of view borders such that target
correspondences in different views can be found and suc-
cessfully inter camera hand-off can be achieved. On a more
practical side, Trivedi[18] shows a nice example of a camera
network with cooperating low and high resolution cameras
in a relatively difficult outdoor (highway) environment.

Some effort has been expended to make these methods
more tractable by combing mostly autonomous systems with
structured light[2], calibration widgets[1], mobile robots [6],
or surveyed landmarks[3]. However, we believe that these
methods are still impractical because they either require too
much labor (in the case of calibration widgets), components
that are so far costly and unreliable (in the case of mobile
robots), or place too many constraints on the host environ-
ment (in the case of structured light, or globally visible and
surveyed landmarks). In any case they all assume that cal-
ibration will be done at setup, and make no provision for
re-calibrating during operation.

The work of Stein[15], and later Stauffer[14] addresses this
shortfall by relying on tracking data to estimate transforms
to a common coordinate system for their camera networks.
This work has the advantage of not distinguishing between
setup and operational phases: any tracking data can be used
to calibrate, or re-calibrate the system. Neither of these
approaches directly addressed the question of PTZ cameras.
More importantly their approach places severe constraints
on the sensors used in the network: the sensors must not
only be able to report very detailed position data for targets,
but must also be able to differentiate targets sufficiently to
successfully track them. This is true because tracks, and
not individual observations, are the basic unit used in the
calibration algorithms. Our approach allows us to operate
with networks of extremely low-capability, low-cost sensors.
Of course, our approach is also applicable to networks of
expensive sensors.

Another fundamental difference between our approach and
the literature cited so far is the validation metric. All the
methods mentioned so far have the goal of recovering a de-
tailed geometric model of the camera network. We advo-
cate a more functional objective criterion: the ability to
usefully employ the PTZ camera in response to events from
the network. Specifically the ability to foveate the causes
of those events. In this way our work is closest to the work
of Rahimi[10], although in contrast, our system does not
require high-capability sensors for tracking and does not re-
strict the space to a single occupant.

3. METHOD
We explore several related approaches, starting with the

simplest and moving to the more complex. The unifying
theme is policy-learning[7]: a stream of events come into the
system, and the system consults a policy to choose action
that will result in the most favorable result. In our case the
stream of events are the activity detections from the context
network, the actions are commands to the PTZ camera, the
favorable result is capturing an image of the cause of the ac-
tivity detection, and the policy is a look-up table that maps
events to actions. The task of the estimator is to generate
the best look-up table. This lookup table represents the
functional calibration of the camera to the space: encoding
relationships between the context sensors and the PTZ pa-
rameters that have previously resulted in high-quality video
(as defined by some externally supplied value function: the
presence of people, the presence of faces, or any other char-
acteristic that can be algorithmically specified as a function
of the PTZ video stream).

We assume in the text there is a single PTZ camera in
the system. The techniques scale linearly in the number of
cameras. In fact, the solution for each PTZ is independent
of all the others and can therefore be pursued in parallel.
This is because we set aside the difficult task of scheduling
in the presence of multiple targets. Our algorithm will pro-
vide an attentional mechanism: the reflexive foveation of the
camera to a peripheral stimulus. While reliable, it is reac-
tive. However, it is possible to embed this algorithm as the
reliable base for a any of the high-level camera scheduling
solutions in the literature, such as[9].

In the following section we cover the estimation of the pan
and tilt parameters from the interaction of the PTZ camera
and the context network. Then in Section 3.2 we will address
the issue of computing the optimal zoom setting given the
recovered pan and tilt parameters.

3.1 Pan-Tilt Learning
The simplest policy table As is a vector where each entry

aγ maps the individual discrete events (γ ∈ Γ) to specific
PT parameters (π ∈ Π). This is the form of the manually
specified policy that we will use as our benchmark. Despite
the fact that we call this form of policy em simple, it is also
the most complex policy that a human could be reasonably
expected to specify manually.

To estimate each entry in the table we wish to find the
parameters that cause the PTZ camera to view the same
event that the context sensor is observing. We must find
the one choice among the discrete set of PTZ parameters
that generated a signal in the training data that is most
similar to the signal from a particular context sensor. The
signals should be similar if they are viewing the same un-
derlying process. In fact, if a particular context sensor γ
often views the same underlying process as the PTZ cam-
era in a particular setting π, then those two signals should
be more correlated than signals deriving from independent
underlying processes. Therefore the best match should be:

aγ = arg max
π∈Π

Rpc(pπ[t], cγ [t])

Rpp(pπ[t])
(1)

where pπ[t] is the event sequence generated by the PTZ
camera in configuration π, cγ [t] is the event sequence gener-
ated by context sensor γ, Rpc is the correlation between the
two sequences, and Rpp is the auto-correlation of the PTZ
event sequence [13].



Without loss of generality, we can assume that the events
from both the context network and the PTZ camera can be
modeled as a binary process. In this case the equation above
becomes:

aγ = arg max
π

‖pπ[t] ∧ cγ [t]‖
‖pπ[t]‖ (2)

where the ‖·‖ operator represents the number of true events
in a process, and the (·∧·) is the boolean intersection opera-
tor. This operation estimates the policy model by examining
all the static relationships in the data: how the events coin-
cide during a given instant. We call this estimator “Static”.

The more powerful form of the policy is a matrix that
captures the dynamic relationships in the data. Here we
will consider only two-dimensional policies, where an action
aγλ is chosen based on a sequence of observed events: a
detection from sensor λ followed by a detection from sensor
γ. A fixed-lag estimator chooses a particular offset ∆t and
attempts to model the dynamic relationships between event
streams skewed in time. We augment the estimator with the
new constraint:

aγλ = arg max
π

‖pπ[t] ∧ cγ [t] ∧ cλ[t−∆t]‖
‖pπ[t]‖ (3)

This estimator will reject any actions that do not fit the ex-
act time signature specified by the parameter ∆t. In partic-
ular we would not expect the embedded static policy on the
diagonal (aγγ) within this larger dynamic policy to match
that found by the static estimator above. That is because
we do not expect the context sensors to typically generate
sets of redundant events separated by exactly ∆t. We can
see that this is true from the results (note that the policies
do not agree in table 1). We call this estimator “Dynamic”.

To make the best possible use of the data available, and
also to allow for more variability in the velocity of the inhab-
itants, we extend eq. 3 to admit a broader set of examples:

aγλ = arg max
π

‚‚‚pπ[t] ∧ cγ [t] ∧
S∆t

δ=0 cλ[t− δ]
‚‚‚

‖pπ[t]‖ (4)

Here the
S

operator is the union over the bit-streams. We
use it here to allow the estimator to consider any event from
sensor λ so long as it happened within a set window pre-
ceding the second event. Since the window extends down to
∆t = 0, it also admits simultaneous events. This allows the
estimator to also do a good job of building the embedded
static policy elements on the diagonal, aγγ . We call this es-
timation strategy “Lenient Dynamic” or simply “Lenient”.

3.2 Focal Length Estimation
It is not necessary for the above learning machinery to ex-

plore the space of all focal length settings for the PTZ cam-
era. This is because the relationship between a wide-angle
view of a scene and a tight framing of some sub-window of
that view is well understood and easy to solve for in closed-
form. The internal calibration necessary for these compu-
tations can be easily measured at the factory and burned
into ROM. In fact, it is the case that PTZ cameras now
come with embedded controllers that can foveate and zoom
selected video sub-windows[12]. In any case autonomous
internal calibration in the field is also possible[17].

We are only left with the task of selecting the appropriate
sub-window. We will select views to exclude regions that are
unlikely to have useful information. To define this mathe-
matically, we need a function that specifies the value of a
captured image as a function of image location:

vI,x,y = V (I, i, j)

Where I is the captured image, and (i, j) is a location within
the image. This function is application specific, and could
be any function computable from the PTZ video stream,
such as number of faces detected:

Vface(I, i, j) =


1 There is a face at(i, j)
0 otherwise

In this paper, we will use occupancy: the number of times a
region was marked as foreground by a classical background
segmentation algorithm[4].

Vmotion(I, i, j) =


1 (I(i, j)−B(i, j)) > τ
0 otherwise

Where B is a scene model, and τ is a threshold. Specifi-
cally we will build a map that represents the all the moving
objects observed by a particular PTZ parameter setting:

Hmotion(π, i, j) =
X

t

Vmotion(Iπ, i, j)

The middle of Figure 1 illustrates one such histogram.
At the end of the policy learning algorithm in Section 3.1,

we have assigned a context event, γ, to a particular view π.
The value function assigns credit to motion that is seen in
the appropriate context only:

Vcontext(I, i, j, γ, B, τ) =

8<: 1 γ ∧ Vmotion(I, i, j)
−1 ¬γ ∧ Vmotion(I, i, j)
0 otherwise

We can now compute a context-specific histogram by con-
sidering all the motion events that occur in the correct con-
text as positive events, and all the motion events that occur
in the incorrect context as negative events.

Hcontext(π, γ, i, j) =

P
t Vcontext(Iπ, i, j, γ, Bt, τt)

‖pπ[t]‖

The right frame of Figure 1 illustrates such a context-embedded
histogram. Notice that, even though the two histograms
from Figure 1 are from the same scene, the context-gated
version has emphasized a particular mode of data that cor-
responds to activity near a particular context sensor. So the
pan-tilt policy estimation may assign two context sensors to
the same wide-angle view. However, the refinement in this
step may result in those context sensors being assigned to



Figure 1: One of the finite camera views (left), the associated total activity histogram (middle, dark is high
activity), and the activity histogram gated by a context event (right)

different pan, tilt, and zoom parameters that frame the data
modes associated with the particular context sensor.

Once the histogram is determined, selecting the sub-window
is a matter of trading off the probability of capturing high-
value video against the risk of missing events. This applica-
tion specific setting is the trade-off between, say capturing
more faces with the wider field of view afforded by a short
focal length, but getting fewer pixels on each face because
the face images smaller than it would in a frame shot with
a longer focal length.

4. EXPERIMENT
The experimental facility is 132m2 of inhabited office space

that is home to approximately a dozen executives and ad-
ministrators and their associated copiers, printers, and filing
cabinets. The space also covers a high-traffic footpath that
connects parts of the larger facility that lie outside the test
area. The entire facility employs approximately 100 people.

The space is covered by a network of twenty motion detec-
tors that observe the entire space. The space is also observed
by a single PTZ camera. The majority of the space is oc-
cupied by low walls that allow the PTZ to view the upper
bodies of standing people without obstruction. The PTZ is
located so that it has unobstructed views down one entry
hallway. Parts of the space is unobservable by the PTZ due
to obstruction by walls. Please see the map in Figure 2 for
details.

Data was collected from the motion sensors over a single
8-hour day. At the same time, the PTZ camera was set to
scan sequentially though a discrete set of 12 evenly-spaced
azimuth positions at a fixed altitude. At each location the
PTZ recorded 100 frames of video at 30Hz. These frames
were processed into motion event streams using standard
background subtraction techniques. This data collection ef-
fort resulted in 240K events total from the twenty sensors
in the context network and 40K events total from the 12
interleaved views from the PTZ stream.

The processing schemes described above were used to gen-
erate a variety of policies for the PTZ. In addition, a manu-
ally coded policy and a random policy were also generated.
The random policy assigned one of the 12 discrete positions
to each slot in the policy according to a uniform distribu-
tion. The manual policy was not restricted to the 12 discrete
azimuth positions. It represents a human using their best
judgment to calibrate the system.

Example policies are summarized in Table 1. The rows of
the table represent the 20 individual context sensors. The

Label Manual Static Dynamic Lenient
S3 1 2 2 2
S2 1 1 1 1
E3 1 1 3 1
S1 2 2 1 2
F3 3 4 5 4
F2 4 3 6 3
F1 5 6 6 6
L2 5 6 7 6
L1 5 5 6 5
D1 5 5 5 5
F4 6 7 6 7
D2 6 5 5 5
D3 7 4 4 4
B4 7 1 1 1
D4 8 7 7 7
B1 8 2 2 2
B2 8 2 2 2
B3 9 10 10 10
E1 12 12 12 12
E2 12 12 10 12

Table 1: Some example policies. Please refer to the
text for a complete explanation.



Figure 2: Left:The test space: 132m2 office space with 20 motion detectors (circles) and one PTZ camera
(triangle). Areas without detectors are personal workspaces surrounded by low walls. Right: the 12 discrete
fields of view overlaid on the map.

columns represent a policy generated by one of the learning
methods. Each entry shows the PTZ position index that
should be chosen, according to that particular policy, in re-
sponse to an event from that particular sensor.

Remember that the “Dynamic” and “Lenient” policies
generate decisions only in response to pairs of events. There-
fore. they may only be completely represented by a full ma-
trix, such as shown below in Figure 4. Table 1 shows only the
diagonal elements of that matrix, i.e.: the decision made by
the dynamic policy in response to seeing a sequence of two
events form the same context sensor. The dynamic policies
are more expressive than the static policies. The diagonal of
the dynamic policy matrix approximates the subset of de-
cisions that are most closely related to the decisions being
made by the static policies. We want the dynamic poli-
cies to function well for stationary targets as well as moving
targets, so the diagonals of the dynamic policies are given
alongside the static policies in Table 1 to help the reader
judge this important subset of the overall performance. For
a more complete understanding of the relative performance
of the policies, please refer to the next section.

To generate validation data, an individual walked a 90
second serpentine path through the empty space that was
designed to traverse every segment of walkway at least once
in each direction. The path was repeated as uniformly as
possible for each policy. Upon each event from the context
network, the policy was evaluated, the PTZ was moved if
necessary, and an image was captured. For the dynamic
policies, if a single event was seen in isolation, then it was
treated as a repeated pair, and the decision was therefore
taken from the diagonal of the policy. The path had the
potential to generate up to 44 events per execution, and
therefore a maximum of 44 opportunities to correctly foveate
the target.

The images were manually evaluated for partial and foveal
hits. A partial hit means that the target was visible in the
wide angle frame. A foveal hit means that the target was

Method total hits (%) foveal hits (%)
Manual 42 (95%) 24 (57%)
Lenient 37 (84%) 25 (68%)
Static 30 (68%) 19 (63%)
Dynamic 28 (64%) 8 (29%)
Random 8 (18%) 4 (50%)

Table 2: The results of the live experiment. Please
refer to the text for a description of partial and
foveal hits.

in the central 25% of the frame and could therefore have
been captured in high detail by a more tightly zoomed shot.
Figure 3 may help to clarify those definitions.

5. RESULTS
Table 2 summarizes the results of the validation runs. The

best performer in total hits is the manually coded static
policy that maps individual events to positions for the PTZ
camera. The manually-coded policy captures 42 of the 44
possible opportunities (95%), but only 57% of those hits
were solid enough to have allowed for tight zoom. The line
marked “Static” is the attempt to learn this static mapping
directly, and shows that the policy was able to capture two-
thirds of the possible opportunities. For comparison, the
randomized policy only managed an 18% hit rate, with half
of those being marginal hits.

There are two dynamic algorithms on the table: the poorly
performing “Dynamic” and the much better “Lenient”. “Dy-
namic” is the fixed-lag estimator from eq. 3. Its overall hit
rate is similar to “Static” but it has an exceptionally high
fraction of marginal hits. Very similar, poor results were
obtained with a variety of values for the fixed-lag parameter
∆t.



Figure 3: Example images from the validation run. Left: a miss. Middle: a hit. Right: a foveal hit, because
the target is in the center 25% of the image (marked by the dashed frame for illustration).

The more admissive “Lenient” utilizes a larger pool of
data by considering a large range of lags during estimation,
and the resulting performance is very good. With an overall
hit rate nearly as good as the manual policy, and with a
much higher fraction of foveal hits (68%), it is easily the
most successful automatic algorithm tested.

6. DISCUSSION
Even with a relatively small database of motion and a very

limited set of PTZ positions the system was able to capture
much of the human performance in a static policy. Given
that the PTZ doesn’t just capture binary motion events,
but reports the position of the motion within the frame,
we believe that a successive refinement strategy could tune
the policy to greatly improve the foveation rate, if not the
overall hit rate. This could be facilitated by an estimate
of the pan-tilt-zoom camera intrinsics[5], which we are not
computing now.

The Lenient Dynamic algorithm is attempting to estimate
a far larger set of parameters (N2 in the number of context
sensors, or 400, compared to N , or 20, for the static pol-
icy) with the same data, however the performance is much
higher, particularly with respect to the foveation rate. This
can be understood by realizing that the static policy doesn’t
model the movement of the target. Even with a very weak,
pure-Markov policy, the foveation rate is significantly im-
proved. This assertion is supported by the fact that the
“Static”, “Dynamic” and “Lenient” policies largely agree
about the correct action in the purely static case: they only
differ in the dynamic case.

An example dynamic policy is shown in fig. 4. The diag-
onal of this matrix represents the embedded static policy.
Those elements are used when two events arrive in sequence
from the same sensor, and also when a single event is re-
ceived alone, without a recent, preceding event. This could
be expected to be the same as the static policy, although it
is not constrained to be the same (see table 1). Everything
off this diagonal is policy for the more typical case when an
event from a sensor is followed by an event from a different
sensor. It should be obvious that many, if not most of these
entries are nonsensical, since the sensors may be nowhere
near each other. In those cases policy is likely chosen solely
based on noise in the training data.

We believe that further improvements in the performance
of dynamic policies could be found by pre-filtering the run-
time event set to ignore nonsensical pairings. These pair-
ings will either be generated by noise in the system, or by

Figure 4: The two-dimensional action table for the
lenient-dynamics case. The row is determined by
the source of the current event, the column is deter-
mined by the source of the prior event. Shades en-
code the PTZ positions (dark for position #1 though
bright for position #12).

coincidental events generated by multiple, independent in-
habitants. In either case, executing those policies is likely
to be detrimental to the performance of the system. It has
been shown that one can reliably recover rough topology of
these kinds of sensor networks[19, 10], so discarding event-
pairs from non-adjacent sensors should be quite possible,
and should result in a large improvement in performance.

It is worth noting that the nature of these systems make
them very difficult to evaluate. The policy must be tested
in vivo. It is not possible to record a dataset and then run
a variety of policies, because the PTZ must be actuated in
real time or the data is lost. It might be possible to work
in simulation, but the model would have to be exceptionally
detailed to capture all the aspects of the system that are
relevant to the results.



7. CONCLUSION
We have shown that it is possible to create pan-tilt-zoom

camera systems that can automatically calibrate to a net-
work of simple sensors using statistical methods, and that
these methods can approach human performance in their
ability to create policies for the successful foveation of pre-
viously unobserved targets. We have further demonstrated
that estimation of crude behavior models can be pursued
jointly with geometry estimation, and that this provides a
significant improvement in performance over estimation of
static geometry alone. These are crucial enabling capabili-
ties for the hybrid networks that will provide context aware-
ness to the smart buildings of the future.
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