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Abstract— In this paper, we consider time of arrival estimation
of ultra-wideband signals based on low-rate samples that are ob-
tained after a square-law device. Signal conditioning techniques
based on a bank of cascaded multi-scale energy collection filters
and wavelets are introduced, where correlations across multiple
scales are exploited for edge and peak enhancements towards
a more accurate detection. The performances of the discussed
algorithms are tested on IEEE 802.15.4a residential line-of-sight
(LOS) channels.

I. I NTRODUCTION

High time resolution is one of the key benefits of impulse
radio ultra-wideband (IR-UWB) signals for precision ranging.
Due to extremely short duration of transmitted UWB pulses,
UWB receivers, as opposed to typical narrow-band wireless
receivers, enjoy being able to resolve individual multipath
components; and the accuracy of TOA estimation is character-
ized by how finely the first arriving signal path is identified,
which may not be the strongest.

Matched filtering (MF), where a correlator template exactly
matches to the received signal, is the optimum filtering tech-
nique for signal detection. However, UWB receivers typically
have to operate at sub-Nyquist sampling rates; this makes it
difficult to align with the various multipath components of
the received signal for MF implementation. Another practical
concern for MF is the requirement to havea-priori knowledge
of the received pulse shapes, which may change from an
environment to another and even between different multipath
components [1]. Therefore, it is difficult to exactly match
to the received pulse-shape, especially when considering the
analog implementations of the template waveforms.

Typical approaches for UWB ranging in the literature are
based on MF of the received signal. Corresponding the time
index that maximizes the MF output to the TOA estimate
is probably the simplest timing estimation technique [2]-[5].
These approaches have limited TOA precision, as the strongest
path is not necessarily the first arriving path. In order to
determine the leading edge of a received signal, Lee and
Scholtz proposed to use a generalized maximum-likelihood
(GML) approach to search the paths prior to the strongest
path [6]. In [7], the leading edge detection problem is taken
as a break-point estimation of the actual signal itself, where
temporal correlation arising from the transmitted pulse isused
to accurately partition the received signal. In both [6], [7],
very high sampling rates were considered, which may not
be practical in many scenarios. A two-step ranging algorithm
is considered in [8] to decrease sampling rate requirements,
where an energy detection (ED) step gives coarse information
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Fig. 1. Sampling of the received signal after energy detection.

about the signal’s whereabouts, and a MF step is applied into
the detected energy block(s) for refinement.

Due to above practical concerns and limitations with MF
at low rate samples, ED based ranging becomes a feasible
alternative. Even though it suffers more from noise due to
a square-law device, ED does not require accurate timing
or pulse shapes. In [9], a synchronization analysis using
EDs shows the potential of non-coherent reception for timing
estimation in IR-UWB systems.

In this paper, we consider TOA estimation based on ED
of the received signal at sub-Nyquist rate sampling. Signal
conditioning methods are introduced, where a bank of cas-
caded energy collection filters are used to exploit the temporal
cross-scale correlation and enhance the accuracy of maximum
energy selection (MES). Multiscale energy product of the
appropriately designed filter outputs is shown to enhance and
shift the peak sample closer to the leading edge. The perfor-
mance of a modified Mallat-Zhong discrete wavelet transform
(MZ-DWT) [10], [11] is investigated for edge detection, whose
accuracy is not as satisfactory due to non-sharp edges and
multiple clusters of the multipath components. Also, a filtering
technique is discussed which enhances the peak selection
by exploiting the energy and information within neighboring
samples. Simulation results demonstrate the improvementsin
the mean absolute error (MAE) of TOA estimation when the
proposed algorithms are employed.

II. SYSTEM MODEL

Let the received UWB multipath signal be represented as

r(t) =
∞∑

j=−∞

djωmp

(
t− jTf − cjTc − τtoa

)
+ n(t) (1)

where frame index and frame duration are denoted byj and
Tf , Ns represents the number of pulses per symbol,Tc is the
chip duration,Ts is the symbol duration,τtoa is the TOA of
the received signal, andNh is the possible number of chip
positions per frame, given byNh = Tf/Tc. Effective pulse
after the channel impulse response is given byωmp(t) =
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Fig. 2. Illustration of basic TOA estimation techniques based on energy samples.
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l=1 αlω(t− τl), whereω(t) is the received UWB pulse
with unit energy,E is the pulse energy,αl and τl are the
fading coefficients and delays of the multipath components,
respectively. Additive white Gaussian noise (AWGN) with
zero-mean and double-sided power spectral densityN0/2 and
varianceσ2 is denoted byn(t). The time-hopping codes and
random polarity codes are denoted bycj ∈ {0, 1, ..., Nh − 1}
anddj ∈ {±1}, respectively. No modulation is considered for
the ranging process.

A. Sampling of the Received Signal After a Square-law Device

In the sequel, we assume that a coarse acquisition on the
order of frame-length is acquired in (1), such thatτtoa ∼
U(0, Tf ), whereU(.) denotes the uniform distribution. As for
the search region, the signal within time frameTf plus half of
the next frame is considered to factor-in inter-frame leakage
due to multipath, and the signal is then input to a square-law
device with an integration interval ofts = Tb (see Fig. 1). The
number of samples (or blocks) is denoted byNb = 3

2
Tf

Tb
, and

n ∈ {1, 2, ..., Nb} denotes the sample index with respect to the
starting point of the uncertainty region (inter-pulse interference
is neglected). The samples at the output of the square-law
device are given by1

z[n] =

Ns∑

j=1

∫ (j−1)Tf+(cj+n)Tb

(j−1)Tf+(cj+n−1)Tb

|r(t)|2dt , (2)

and the performance can be further improved by using the
energy inNT symbols. The bit energy when usingNs pulses
becomesEb = NsE.

B. Design Trade-offs

There exists a trade-off between using larger blocks and
smaller blocks in energy detection. As the block size gets
narrower individual peaks due to noise increases the likelihood
of leading-energy block misdetection. Besides, there is a trade-
off between using multiple pulses per symbol and a single (or
few) pulse(s) with an equivalent energy. In Table I, statistics
of the energy detector outputs for noise-only samples (i.e., µ0

and σ2
0), and signal plus noise samples (i.e.,µn and σ2

n for
the nth sample)) are given for single and multiple pulses per

1Note that chip-rate (or other high-rate) sampling can be achieved by using
symbol-spaced sampling and multiple training symbols, and shifting the signal
by desired sampling period at each symbol.

TABLE I

STATISTICS FOR SINGLE AND MULTIPLE PULSES PER SYMBOL.

Single pulse Multiple pulses
µ0 Mσ2 NsMσ2

σ2

0
2Mσ4 2NsMσ4

µn Mσ2 + NsEn NsMσ2 + NsEn

σ2
n 2Mσ4 + 4σ2NsEn 2NsMσ4 + 4σ2NsEn

symbol to demonstrate the impact ofNs on the performance.
Degree of freedom is given byM = 2BTb + 1, En is the
total signal energy within thenth block, andB is the signal
bandwidth. Careful observation of the table reveals that the
mean-shifts betweenµ0 andµn for the two cases are identical,
i.e. NsEn. However, when multiple pulses are employed, the
noise variances corresponding to both noise-only and signal
plus noise blocks increases. This implies that leading edge
detection algorithm will perform detrimental as the numberof
pulses increases.

Also note that the selection ofNb ∗ Tb = Tf limits the
maximum measurable distance. For instance, a distance that
it would take(Nb + 1) ∗ Tb seconds for the radio frequency
(RF) signal to traverse would be erroneously treated as a signal
arriving within the first block in the energy analysis.

In the next two sections, basic TOA estimation algorithms
(see Fig. 2) as well as proposed techniques that operate on
z[n] for leading edge detection are presented and formulated.

III. TOA E STIMATION ALGORITHMS

Choosing the maximum energy output to be the leading
edge is the simplistic way of achieving a timing estimate.
Using MES, the TOA estimate with respect to the beginning of
the time frame is evaluated ast̂MES =

[

argmax
1≤n≤Nb

{
z[n]

}]

Tb =

nmaxTb. However, the strongest energy block in many cases
may not be the leading energy block (Fig. 2), and the MES
therefore hits an error-floor even in high signal to noise
ratio (SNR) region. Also, the performance of it degrades
with uncertainiry regionNb, since it becomes more likely to
identify a noise only block as the maximum energy block.

Received samples can be also compared to an appropri-
ate threshold, and the first threshold-exceeding sample in-
dex can be corresponded as the TOA estimate, i.e.t̂TC =[

min
{
n|z[n] > ξ

}]

Tb, whereξ is a threshold that must be
set based on the received signal statistics. Given the minimum
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Fig. 3. Block diagram for weighted multi-scale product of MZ-DWT.

and maximum energy sample values, the following normalized
threshold can be used [12]

ξnorm =
ξ − min{z[n]}

max{z[n]} − min{z[n]} . (3)

In order to improve the performance of the MES, the
samples prior to the maximum energy sample can be searched.
The TOA estimate with such a searchback and thresholding
scheme is then given bŷtMES−SB =

[

min{n|z̃[n] > ξ} +

nmax −Wsb −1
]

Tb, wherez̃[n] =
[

z[nmax −Wsb] z[nmax −
Wsb + 1] ... z[nmax]

]

, and Wsb denotes the searchback
window length in number of samples. Note that searchback
and threshold selection can also be implemented in other ways,
such as thresholding based solely on the noise level [13].

A. Weighted Multiscale Product (WMP) of MZ-DWT

Derivative of Gaussian (dG) approaches are commonly used
in the literature for detecting the edges by analyzing the
signal at multiple scales. In order to preserve the correlation
(and regularities) across various scales, non-orthogonalMZ-
DWT [10] is employed. The MZ-DWT ofz[n] ∈ L2(R)
at scales, where 1 ≤ n ≤ Nb, is given byW2sz[n] =
z[n] ∗ φ2s [n] =

∑

m φ2s [m]z[n−m], which is equivalent to

W2sz[n] =

(

z ∗
(

2s dψ2s

dn

))

[n] = 2s d

dn

(
z ∗ ψ2s

)
[n] , (4)

whereψ[n] andφ[n] are discrete-time approximations to the
Gaussian function and its derivative using cubic and quadratic
splines, respectively,∗ denotes convolution,1 ≤ s ≤ S − 1,
and S = log2Nb. Equation (4) implies that MZ-DWT is
analogous to smoothing the signal with Gaussian splines at
multiple scales and then estimating the gradients.

As analyzed by Sadleret. al. in [11], multiscale product
(MP) of MZ-DWT given by P (DWT )

Sopt
[n] =

∏Sopt

s=1 W2sz[n]
can be used for improving the accuracy of edge detection,
whereSopt is the optimal scale that enhances the regularities.
However, it is not guaranteed to observe sharp edges in
the UWB energy vector. Since the energy samples do not
have a smooth variation, the edges can be mixed with noise
samples when the MP-MZ-DWT is used. Poor edge detection
performance of this approach in our simulations (which is
not surprising due to the discussed issues) motivated us to
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Fig. 4. Mean block energies around the maximum energy block in CM1
for Tb = 1ns and4ns. Samples with negligible values are discarded on the
plots. Time reversed forms of these functions are used for filtering the energy
vector prior to block detection (F-MES).

introduce a weighting function to suppress the edges causedby
noise while promoting the edges in the vicinity of the energy-
bearing blocks (see Fig. 3)

P̃
(DWT )
Sopt,ζ

[n] =
(

ψ2ζ [n] − min
{
ψ2ζ [n]

})

︸ ︷︷ ︸

Weighting Function = G(ζ)

×
Sopt∏

s=1

W2sz[n] ,

(5)
whereζ is an arbitrary scale so that the energy in the multipath
components is effectively captured in the smoothed signal.The
value ofζ is set to3 in our simulations. The TOA estimate is
then given aŝtDWT =

[

argmax
1≤n≤Nb

{
P̃

(DWT )
Sopt,ζ

[n]
}]

Tb for n even,

and t̂DWT =
[

argmin
1≤n≤Nb

{
P̃

(DWT )
Sopt,ζ

[n]
}]

Tb for n odd (with the

distinction arising in order to calculate the rising edge).

IV. I MPROVING THE ACCURACY OFMES

In this section two filtering techniques that enhance the
detection and acquisition (and thus the TOA estimation)
performance of the signal by exploiting the energy in the
multipath components are presented. The first uses the average
energy distribution around the maximum energy block, while
the second a bank of scaling filters designed in a dyadic tree
structure, whichpushes the maxima closer to the leading edge
of the signal. Upon accurate peak selection, these techniques
can be followed by a searchback step for precise TOA esti-
mation.

A. Filtered Maximum Energy Selection (F-MES)

By knowing the average energy distribution around the
maximum energy block, one can filter the energy vector
to enhance the peaks (and suppress noise components) by
collecting the energies present in the neighboring blocks.In
Fig. 4 the mean energy distribution around the maximum
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energy block is shown forTb = 1ns andTb = 4ns, after
averaging over 1000 channel realizations for CM1. The mean
block energy values are not significantly different for CM2.
In order to capture the energy effectively and characterizethe
peaks better, one can filter the received energy vector with a
time-reversed form of the discrete data in Fig. 4.

B. Multiscale Energy Products (MEP)

Signal energies from coarse to finer time scales can be
exploited to improve leading edge detection performance.
Using the cross-scale products have two advantages: 1) since
the energy samples at different scales are correlated (and the
noise samples are uncorrelated), their product is expectedto
enhance the peaks due to signal existence (and suppress the
noise), and 2) by appropriately designing the multiscale filters
(see Fig. 5), it is possible topush the peak sample closer to
the leading edge.

Let h2s [n] denote the rectangular filter at scales, given by
h2s [n] = u[n + 2s] − u[n], wheres = 1, 2, ..., S is the scale
number ranging from finer scales to coarser,S = ⌊log2Nb⌋,
andu[n] is the step function. The convolution ofh2s [n] with
the energy vectorz produces energy concentration of our
signal at various scales, given byys[n] =

∑

k z[k]h2s [n− k].
Sinceys[n] are correlated across different scales, we can use
their direct multiplication to enhance the peaks closer to the
leading edge of the signal, and suppress noise components,
i.e. P (MEP )

S [n] =
∏S

s=1 ys[n], whereP (MEP )
S [n] denotes the

product of convolution outputs from scale1 (which is the
energy vector itself) through scaleS. Then, the location of the
strongest path is estimated ast̂MEP =

[

argmax
1≤n≤Nb

{
PS [n]

}]

Tb.

The timing estimation performance of MEP can be char-
acterized by the statistics of the delay offset between the
strongest energy block and first energy block. Let∆ be the
distance in terms of the number of blocks between first-
arriving energy block and maximum energy block. Using the
MEP, the peaks away from the leading edge are effectively
suppressed, decreasing∆. In Fig. 6, cumulative distribution
functions (CDF) of∆ before and after the bank of multiscale
filters are shown forTb = 4ns at variousEb/N0. It is observed
that especially when the noise variance is high, the MEP
lowers ∆, and consequently the error in the TOA estimate.
Note that at lowEb/N0, erroneous selection of the maximum
energy block prior to the leading edge becomes more probable,
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Fig. 6. CDFs of delays between the first energy block and maximumenergy
block, before and after the bank of multi-scale filters.

while at highEb/N0, the maximum energy samples are usually
after the leading edge block.

V. RESULTS AND DISCUSSION

In all the simulations that are presented in this section,
the CM1 (residential LOS) channel model of IEEE802.15.4a
is employed. The channel realizations are sampled at8GHz,
1000 different realizations are generated, and each realization
has a TOA uniformly distributed within(0, Tf ). A raised
cosine pulse ofTc = 1ns is considered for all scenarios. After
introducing uniformly distributed delays, energies are collected
within non-overlapping windows to obtain decision statistics.
The other simulation parameters areTf = 200ns,B = 4GHz,
NT = 1, Ns = 1, andWsb = ⌈15ns/Tb⌉.

The performances of different energy detection based TOA
estimation algorithms are analyzed in Fig. 8 forTb = 1ns
and in Fig. 7 forTb = 4ns. Theξnorm is set to0.5 with
the assumption that there is no SNR estimate available for
appropriate threshold selection (see [12] for detailed analysis
for the selection ofξnorm andWsb). It is observed that the
TC performs well at highEb/N0, and hits a lower error
floor compared to MES, while MES is better at higher noise
variance. The WMP-MZ-DWT performs better than the MES
at high Eb/N0, however, not as well as the MES-SB. The
performance improvement that comes with F-MES is better at
higher noise variance. On the other hand, MEP and especially
MEP-SB performs well at allEb/N0, and does not require
estimation of the filter function as in the F-MES case. Using
smaller block sizes is seen to yield only slight gains.

In Fig. 9a, MAE performances of MES are analyzed for
various Tf values (i.e., ambiguity levels) whileTb = 1ns.
Even though there is not much variation in the performance at
largeEb/N0, higherNb may degrade the performance at lower
Eb/N0. In Fig. 9b, performance of MEP-SB was studied when
Ns = 1 andNs = 5, with identical symbol energies in both
cases. It is observed that using multiple pulses per symbol
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in essence degrades the performance with an ED approach
due to non-coherent combining loss. It can also be seen that
multiple symbols can be used to obtain a gain at lowEb/N0;
however, at high SNR in all the cases, similar error floors are
experienced.

VI. CONCLUSION

In this paper, various TOA estimation algorithms for low
sampling rate UWB systems based on energy detection are an-
alyzed. A multiscale energy product algorithm which analyzes
the energy at multiple time resolutions with hierarchically
designed filters is introduced, so that the peaks closer to
the leading edge are enhanced. Simulations show that the
introduced multi-scale energy product implemented with a
search-back outperforms the other algorithms except the TC
algorithm at very high SNR.
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