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Abstract
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rate samples that are obtained after a square-law device. Signal conditioning techniques based
on a bank of cascaded multi-scale energy collection filters and wavelets are introduced, where
correlations across multiple scales are exploited for edge and peak enhancements towards a more
accurate detection. The performances of the discussed algorithms are tested on IEEE802.15.4a
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Abstract— In this paper, we consider time of arrival estimation
of ultra-wideband signals based on low-rate samples that are ob- 5 z[n]
tained after a square-law device. Signal conditioning techniques LNA |—| BPF |—| (.) —_—
based on a bank of cascaded multi-scale energy collection filters
and wavelets are introduced, where correlations across multiple t
scales are exploited for edge and peak enhancements towards i ) _ _ _
a more accurate detection. The performances of the discussed Fig. 1. Sampling of the received signal after energy detactio

algorithms are tested on IEEE 802.15.4a residential line-of-sight
(LOS) channels.

S

|. INTRODUCTION about the signal's whereabouts, and a MF step is applied into
the detected energy block(s) for refinement.

High time _resolution Is one of _the key benef_it; of impglse Due to above practical concerns and limitations with MF
radio ultra-wideband (IR-UWB) signals for precision rargin at low rate samples, ED based ranging becomes a feasible

Due to extremely short duration of transmitted UWB pulse§yenative. Even though it suffers more from noise due to

UWB receivers, as opposed to typical narrow-band W'releﬁssquare-law device, ED does not require accurate timing

receivers, enjoy being able to resolve individual mulllipatOr pulse shapes. In [9], a synchronization analysis using

components; E.ind the accuracy qf TOA estimatio_n i_s Cha.FQCtErDs shows the potential of non-coherent reception for @min
ized by how finely the first arriving signal path is 'dem'f'edestimation in IR-UWB systems.

which may qot k.)e the strongest. In this paper, we consider TOA estimation based on ED

Matched filtering (MF), where a correlator template exactlys yhe received signal at sub-Nyquist rate sampling. Signal
matches to the received signal, is the optimum filtering €cfiyjitioning methods are introduced, where a bank of cas-
nique for signal detection. However, UWB receivers typigallcageq energy collection filters are used to exploit the teaipo
h?‘Ye to operate at sub-Nyqu_lst sampl!ng rates; this makes,ihss_scale correlation and enhance the accuracy of maximu
difficult to align with the various multipath components Obnergy selection (MES). Multiscale energy product of the
the received signal for MF implementation. Another praitic 55 qpriately designed filter outputs is shown to enhance an
concern for MF is the requirement to haxeriori knowledge ghift the peak sample closer to the leading edge. The perfor-
of the received pulse shapes, which may change from gn,ce of a modified Mallat-zhong discrete wavelet transform
environment to another and even between different multipgl,,7_p\w) [10], [11] is investigated for edge detection, wikos
components [1]. Therefore, it is difficult to exactly m_atd}:lccuracy is not as satisfactory due to non-sharp edges and
to the received pulse-shape, especially when considefieg b, iipie clusters of the multipath components. Also, afiitg

analog implementations of the template waveforms. technique is discussed which enhances the peak selection
Typical approaches for UWB ranging in the literature arg

, i - By exploiting the energy and information within neighbgrin
based on MF of the received signal. Corresponding the t"”Eémples. Simulation results demonstrate the improvenients

index that maximizes the MF output to the TOA estimatge mean absolute error (MAE) of TOA estimation when the
is probably the simplest timing estimation technique EJ-[ roposed algorithms are employed.
These approaches have limited TOA precision, as the stsrbnd%

path is not necessarily the first arriving path. In order to Il. SYSTEM MODEL

determine the leading edge of a received signal, Lee and | et the received UWB multipath signal be represented as
Scholtz proposed to use a generalized maximum-likelihood -

(GML) approach to search the paths prior to the strongest .

path [6]. In [7], the leading edge detection problem is taken r(t) = Z djwmp(t = jT5 = &Te = Tioa) +n(t) (1)
as a break-point estimation of the actual signal itself, nehe J=

temporal correlation arising from the transmitted pulsesed where frame index and frame duration are denoted layd
to accurately partition the received signal. In both [6]], [7 T}, N, represents the number of pulses per symiplis the
very high sampling rates were considered, which may nohip duration,T; is the symbol durations;,, is the TOA of
be practical in many scenarios. A two-step ranging algoriththe received signal, and/;, is the possible number of chip
is considered in [8] to decrease sampling rate requiremergssitions per frame, given by, = T,/T.. Effective pulse
where an energy detection (ED) step gives coarse informatiafter the channel impulse response is givendyy,(t) =
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Fig. 2. lllustration of basic TOA estimation techniques lthea energy samples.

= L . . TABLE |

E Zl:.l alw(t - Tl)f Wherew(t) IS the recelved uws pulse STATISTICS FOR SINGLE AND MULTIPLE PULSES PER SYMBOL
with unit energy, E is the pulse energyy; and r; are the S oS o 5UEes
fading coefficients and delays of the multipath components, o e s
respectively. Additive white Gaussian noise (AWGN) with o2 M o? SN MTo™
zero-mean and double-sided power spectral dengity2 and L MoZ + N,E, NsMo? 4+ NsE,,
varianceo? is denoted byn(t). The time-hopping codes and o2 | 2Mo* +46°NsEy | 2NsMo® + 46° N, Ey,

random polarity codes are denoted gye {0, 1,..., N — 1}
andd; € {£1}, respectively. No modulation is considered for

the ranging process. .
ging p symbol to demonstrate the impact &f on the performance.

A. Sampling of the Received Signal After a Square-law Device Degree of freedom is given by/ = 2BT;, + 1, E, is the
- al signal energy within theth block, andB is the signal
Orcljr;rth;f ?r‘eaqr:wjgl’l evr\llgtr? Si??ceqfl?rztdainciigsessgr?utlsgfnjn Ra&ndwidth. Careful observation of the table reveals that th

U(0,Ty), wheret((.) denotes the uniform distribution. As for mean-shifts betweeryiy and uy, for the two cases are identical,

the search region, the signal within time fraffieplus half of €. NsE”'. However, when multlple pulses are employed, 'the
the next frame is considered to factor-in inter-frame Igaka "O'>c Varnances corresponding to both noise-only and kigna

due to multipath, and the signal is then input to a square-I S n_oise blo<_:ks in(_:reases. This !mplies that leading edge
device with an integration interval of = T}, (see Fig. 1). The etection algorithm will perform detrimental as the numbgr

: 3T pulses increases.
numb1er20f sagplzs (or blorc]:ks) IS (jler)o(tjedzﬁy; §T£’ and Also note that the selection oW, = T, = T limits the
" e{ P o b} enotest.esampe INCEX wit re§pect to thH‘?laximum measurable distance. For instance, a distance that
starting point of the uncertainty region (inter-pulse ifeéeence it would take (N, + 1) * T, seconds for the radio frequency

is neglected). The samples at the output of the square-Ig¥ry gignal to traverse would be erroneously treated asakig

device are given by arriving within the first block in the energy analysis.
Ny o(G—1)Ts+(c;+n)Ts In the next two sections, basic TOA estimation algorithms
z[n] = / lr(t)|%dt | (2) (see Fig. 2) as well as proposed techniques that operate on
j=17G=DTs+(c;+n—1)Ts z[n] for leading edge detection are presented and formulated.
and the performance can be further improved by using the [1l. TOA ESTIMATION ALGORITHMS
energy inN7 symbols. The bit energy when using, pulses  choosing the maximum energy output to be the leading
becomesk), = N, E. edge is the simplistic way of achieving a timing estimate.

Using MES, the TOA estimate with respect to the beginning of

B. Design Trade-offs the time f . | 43 T
There exists a trade-off between using larger blocks ande Ime frame Is evaluated g ps = {?gg,,rgja\;:{z[n]}} b=

smaller blocks in energy detection. As the block size gets,..T,. However, the strongest energy block in many cases
narrower individual peaks due to noise increases theikeli may not be the leading energy block (Fig. 2), and the MES
of leading-energy block misdetection. Besides, thereiiadet therefore hits an error-floor even in high signal to noise
off between using multiple pulses per symbol and a single (@tio (SNR) region. Also, the performance of it degrades
few) pulse(s) with an equivalent energy. In Table |, stafist with uncertainiry regionV,, since it becomes more likely to

of the energy detector outputs for noise-only samples fig. identify a noise only block as the maximum energy block.
and o2), and signal plus noise samples (i.e,, and o2 for Received samples can be also compared to an appropri-
the nth sample)) are given for single and multiple pulses peate threshold, and the first threshold-exceeding sample in-

dex can be corresponded as the TOA estimate,ti:e. =

INote that chip-rate (or other high-rate) sampling can beeseti by using : i
symbol-spaced sampling and multiple training symbols, andisithe signal mln{n\z[n] > f} T,, where is a threshold that must be

by desired sampling period at each symbol. set based on the received signal statistics. Given the mimim
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. for T, = 1ns and4ns. Samples with negligible values are discarded on the
In order to improve the performance of the MES, thgiots. Time reversed forms of these functions are used forifitiethe energy

samples prior to the maximum energy sample can be searchyggtor prior to block detection (F-MES).
The TOA estimate with such a searchback and thresholding

scheme is then given b rs_s5 = {min{n\é[n] > &+
introduce a weighting function to suppress the edges cdused

nmaz = Wb = 1} Ty, wherez[n] = {Z[nm‘” = Wat] 2[mas = oice while promoting the edges in the vicinity of the energy

We + 1] ... z[nmax]l, and W, denotes the searchbackbearing blocks (see Fig. 3)

window length in number of samples. Note that searchback Sopt

and threshold selection can also be implemented in othes,way p(DWT)(, 1 _ . % Wos
such as thresholding based solely on the noise level [13]. Sopt:¢ ] (%C "] mm{%c [n]}) };[1 2zl

A. Weighted Multiscale Product (WMP) of MZ-DWT Weighting Function = G(c) 5)

Derivative of Gaussian (dG) approaches are commonly us&biere( is an arbitrary scale so that the energy in the multipath
in the literature for detecting the edges by analyzing tfe@mponents is effectively captured in the smoothed sigriad.
signal at multiple scales. In order to preserve the coimelat value of( is set to3 in our simulations. The TOA estimate is
(and regularities) across various scales, non-orthogbizal then given as pyr = {argmax{péDWT) [n]}}Tb for n even,

1<n<N,

DWT [10] is employed. The MZ-DWT ofz[n] € L*(R) <n< o
at scales, wherel < n < N, is given by Wa:z[n] = andipws = {argmin{PéDWCT) [n]}}Tb for n odd (with the
s[n] = s — hich i ival 1<n< N, opty
2l Garln} = 2y @2e[mlzln —m], which is equivalent to distinction arising in order to calculate the rising edge).
dipgs d
Wasz[n] = (z * (25 ;/}:L ))[n] = 28%@ * s )[n] , (4) IV. IMPROVING THE ACCURACY OFMES

. ] o In this section two filtering techniques that enhance the
where[n] and ¢[n] are discrete-time approximations to thjetection and acquisition (and thus the TOA estimation)
Gaussian function and its derivative using cubic and qu&draperformance of the signal by exploiting the energy in the
splines, respectivelys denotes convolution] < s < S —1, multipath components are presented. The first uses thegavera
and 5 = log, N, Equation (4) implies that MZ-DWT is energy distribution around the maximum energy block, while
analogous to smoothing the signal with Gaussian splinestaé second a bank of scaling filters designed in a dyadic tree
multiple scales and then estimating the gradients. structure, whichpushes the maxima closer to the leading edge

As analyzed by Sadleet. al. in [11], multiscale product of the signal. Upon accurate peak selection, these tecesiqu
(MP) of MZ-DWT given by Péi ‘:VT) [n] = Hf;”f Wasz[n]  can be followed by a searchback step for precise TOA esti-
can be used for improving the accuracy of edge detectianation.
whereS,,; is the optimal scale that enhances the regularities. _ ) )

However, it is not guaranteed to observe sharp edges Ain Filtered Maximum Energy Selection (F-MES)

the UWB energy vector. Since the energy samples do notBy knowing the average energy distribution around the
have a smooth variation, the edges can be mixed with nois@ximum energy block, one can filter the energy vector
samples when the MP-MZ-DWT is used. Poor edge detectitm enhance the peaks (and suppress noise components) by
performance of this approach in our simulations (which sollecting the energies present in the neighboring bloaks.

not surprising due to the discussed issues) motivated usHg. 4 the mean energy distribution around the maximum
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In order to capture the energy effectively and charactdtiee
peaks better, one can filter the received energy vector witlFig. 6. CDFs of delays between the first energy block and maxirenengy
time-reversed form of the discrete data in Fig. 4. block, before and after the bank of multi-scale filters.

B. Multiscale Energy Products (MEP)

Signal energies from coarse to finer time scales can B
exploited to improve leading edge detection performanc@z
Using the cross-scale products have two advantages: 1§ sinc
the energy samples at different scales are correlated fend t
noise samples are uncorrelated), their product is expeaoted In all the simulations that are presented in this section,
enhance the peaks due to signal existence (and suppressthiheCM1 (residential LOS) channel model of IEEE802.15.4a
noise), and 2) by appropriately designing the multiscaterfil is employed. The channel realizations are sampleg8iGitz,
(see Fig. 5), it is possible tpush the peak sample closer to1000 different realizations are generated, and each realizatio
the leading edge. has a TOA uniformly distributed within(0,7). A raised

Let hy:[n] denote the rectangular filter at scalegiven by cosine pulse of. = 1ns is considered for all scenarios. After
has[n] = u[n + 2°] — u[n], wheres = 1,2, ...,.S is the scale introducing uniformly distributed delays, energies arkented
number ranging from finer scales to coarsgr= |log, N, |, Within non-overlapping windows to obtain decision statist
andu[n] is the step function. The convolution éf-[n] with ~ The other simulation parameters dre = 200ns, B = 4GHz,
the energy vectorz produces energy concentration of ouNz =1, Ny = 1, andWy, = [15ns/T}].
signal at various scales, given by[n] = Y, z[k]has[n — k]. The performances of different energy detection based TOA
Sincey,[n] are correlated across different scales, we can ugstimation algorithms are analyzed in Fig. 8 fy = 1ns
their direct multiplication to enhance the peaks closerh® tand in Fig. 7 forT, = 4ns. The&,,.n is set t00.5 with
leading edge of the signal, and suppress noise componetits, assumption that there is no SNR estimate available for
ie. péMEP) [n] = Hf—l yslnl, WherepéMEP) [n] denotes the appropriate threshold selection (see [12] for detailedyaisa
product of convolution outputs from scale (which is the for the selection of,,.,, and Wy). It is observed that the
energy vector itself) through scafe Then, the location of the ;II-C performs (;’V?” I\;‘Eglghﬁ/ﬁégﬂd thE{tS a iok\:\'/e; error
: - P _ oor compared to , while is better at higher noise
strongest path is estimated &g = [?2%2?\,}:{135 [n]}}Tb' variance. The WMP-MZ-DWT performs better than the MES

The timing estimation performance of MEP can be chasat high E,/Ny, however, not as well as the MES-SB. The
acterized by the statistics of the delay offset between therformance improvement that comes with F-MES is better at
strongest energy block and first energy block. Letbe the higher noise variance. On the other hand, MEP and especially
distance in terms of the number of blocks between firsMEP-SB performs well at allE, /Ny, and does not require
arriving energy block and maximum energy block. Using thestimation of the filter function as in the F-MES case. Using
MEP, the peaks away from the leading edge are effectivedynaller block sizes is seen to yield only slight gains.
suppressed, decreasingy In Fig. 6, cumulative distribution In Fig. 9a, MAE performances of MES are analyzed for
functions (CDF) ofA before and after the bank of multiscalevarious Ty values (i.e., ambiguity levels) whil&, = 1ns.
filters are shown foff;, = 4ns at variouss;, /Ny. It is observed Even though there is not much variation in the performance at
that especially when the noise variance is high, the MHRrgeE; /Ny, higher N, may degrade the performance at lower
lowers A, and consequently the error in the TOA estimatdy,/Ny. In Fig. 9b, performance of MEP-SB was studied when
Note that at lowE, /Ny, erroneous selection of the maximumV; = 1 and N, = 5, with identical symbol energies in both
energy block prior to the leading edge becomes more propaldases. It is observed that using multiple pulses per symbol

ile at highE; /Ny, the maximum energy samples are usually
ter the leading edge block.

V. RESULTS ANDDISCUSSION
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