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Low Latency Decoding of EG LDPC Codes

Juntan Zhang, Jonathan S. Yedidia and Marc P. C. Fossorier

Abstract

We describe simple iterative decoders for low-density parity check codes based on Eu-

clidean geometries, suitable for practical VLSI implementation in applications requiring

very fast decoders. The decoders are based on shuffled and replica-shuffled versions of

iterative bit-flipping and quantized weighted bit-flipping schemes. The proposed decoders

converge faster and provide better ultimate performance than standard bit-flipping de-

coders. We present simulations that illustrate the performance versus complexity trade-

offs for these decoders. We can show in some cases through importance sampling that no

significant error-floor exists.



1 Introduction

Low density parity check (LDPC) codes were first discovered in 1960’s [1] and have received

significant attention recently because of their excellent performance when decoded using iterative

decoders [2, 3]. LDPC codes can be constructed using random or deterministic approaches. In

this report, we focus on a class of LDPC codes known as Euclidean Geometric (EG) LDPC

codes, which are constructed deterministically using the points and lines of a Euclidean geometry

[4, 5]. The EG LDPC codes that we consider are cyclic and consequently their encoding can

be efficiently implemented with linear shift registers. Minimum distances for EG codes are also

reasonably good and can be derived analytically. Iteratively decoded EG LDPC codes also seem

to not have the serious error-floors that plague randomly-constructed LDPC codes; this fact can

be explained by the observation made in [6] that EG LDPC codes do not have pseudo-codewords

of weight smaller than their minimum distance. For these reasons, EG LDPC codes are good

candidates for use in applications like optical communications that require very fast encoders

and decoders and very low bit error-rates.

LDPC codes can be decoded using hard-decision, soft-decision and hybrid decoding meth-

ods. Soft decoding algorithms such as belief propagation (BP) provide good performance but

require high decoding complexity, and are therefore not very suitable for high speed VLSI imple-

mentations. Instead, hard-decision and hybrid schemes such as bit flipping (BF) and quantized

weighted bit-flipping (QWBF) offer a better trade-off between error performance, decoding com-

plexity, and decoding speed.

Most standard iterative decoders of LDPC codes require at least several tens of iterations

for the iterative decoding process to converge, which is not realistic for high-speed VLSI im-

plementations. In [7, 8], a decoding scheme called “shuffled BP” was presented to reduce the

required number of iterations of standard BP decoding. Related bit-flipping algorithms based

on the shuffled BP idea are easy to construct. Recently, an improved but more complex itera-

tive algorithm named “replica-shuffled iterative decoding” was developed to further decrease the

required number of decoding iterations [9]. In this report, we study the performance of shuffled

and replica-shuffled versions of bit-flipping (BF) and quantized weighted bit-flipping (QWBF)

decoders for EG LDPC codes.

Another problem for VLSI implementations of LDPC decoders is related to the fact that

to achieve a good performance, the LDPC code must have a large codeword length, and a

correspondingly large parity check matrix. The large parity check matrix makes it difficult to

implement the iterative decoder in a fully parallel manner. To deal with this problem, it makes

sense to consider shuffled and replica-shuffled algorithms which divide the codeword bits into
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groups, and update one group of bits at a time [7, 9].

This report is organized as follows. Section 2 describes the construction of EG LDPC codes.

Section 3 briefly reviews standard BF, weighted bit-flipping, and QWBF decoders. Shuffled and

group-shuffled versions of these decoders are presented in Section 4 and Section 5, respectively.

In Section 6, replica group-shuffled schemes are discussed. Finally, in Sections 7 and 8, we

provide simulation results for the various presented decoding methods.

2 Definition of EG LDPC codes

A binary LDPC code is specified by a parity-check matrix containing mostly zeros and only a

small number of ones. A regular binary (N, K)(dv, dc) LDPC code has a transmitted codeword

block length N , a information block length K, and a parity check matrix with precisely dv ones

in each column and dc ones in each row. We refer to the N elements of an LDPC codeword

w = [wn] as bits, and the M rows of the parity check matrix H = [Hml] as checks. Accordingly,

in a regular binary LDPC code, every code bit is checked by exactly dv parity checks, and every

parity check involves exactly dc code bits. We denote the set of bits that participate in check

m by N (m) = {n : Hmn = 1} and the set of checks in which bit n participates as M(n) =

{m : Hmn = 1}.

EG LDPC codes [4, 5] are regular LDPC codes characterized by a parity-check matrix which

is constructed using a finite Euclidean geometry. Let α=(α1,α2,. . . ,αm) be an m-tuple whose

component αi is from the Galois field GF (2s). The set of all possible α’s has cardinality 2ms and

forms an m-dimensional Euclidean geometry over GF (2s), which is denoted by EG(m, 2s). Each

m-tuple α is called a point in EG(m, 2s). The all-zeros point is called the origin. Let α1 and

α2 be two linearly independent points in EG(m, 2s). Then the collection of {α1 + βα2}, with

β ∈ GF (2s), has 2s points and forms a line (1-flat) in EG(m, 2s). There are J0 = (2(m−1)s−1)(2ms−1)
2s−1

lines in EG(m, 2s) that do not contain the origin.

To construct a cyclic EG LDPC code based on EG(m, 2s), we form the parity check matrix

HEG whose columns are all of the 2ms − 1 non-origin points in EG(m, 2s), and whose rows are

the incidence vectors of all of the J0 lines in EG(m, 2s) that do not contain the origin. The

codes used in this paper all have m = 2, so J0 = N = 22s−1, which means that the parity check

matrix that we use has an equal number of rows and columns (some of the rows are redundant).
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3 BF and Quantized WBF decoding

Assume a codeword w = (w1, w2, . . . , wN) is transmitted over an AWGN channel with zero

mean and variance N0/2 using BPSK signaling and let y = (y1, y2, . . . , yN) be the corresponding

received sequence.

3.1 Standard BF Decoding

The standard BF decoding is a hard decision algorithm. Let z = (z1, z2, . . . , zN) be the binary

hard decision sequence obtained from y as follow:

zn =







1 if yn ≤ 0

0 if yn > 0

Let s be the syndrome of z:

s = (s1, s2, . . . , sM) = z ·HT (1)

where

sm =
N
∑

n=1

znhmn. (2)

The received vector z is a codeword if and only if s = 0. If s 6= 0, errors are detected, and

any nonzero syndrome sm indicates a parity failure. Let Fn be the set of nonzero syndromes

checking on bit n, i.e, Fn = {sm : sm = 1 and m ∈ M(n)}. In standard BF decoding, the

decoder computes all the syndromes and then flips any bit which is involved in more than a

fixed number δ of parity failures. Based on these new values, the syndromes are recomputed

and the process is repeated until a codeword is found or the maximum number of iterations is

reached.

Thus, the standard BF decoding is carried out as follows:

Step 1 Compute s = (s1, s2, . . . , sM) = z ·HT

Step 2 For n = 1, 2, . . . , N , flip zn with |Fn| ≥ δ.

Step 3 Repeat step 1 and 2 until s = 0 or the maximum number of iterations Imax is reached.

It should be noted that this version of BF decoding can be viewed as a simplified version

of the conventional Gallager algorithm B [1]. This simplification can be justified by the large

values of dc and dv for EG LDPC codes.
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3.2 WBF Decoding

The performance of standard BF decoding can be improved upon by using a soft-valued reliability

measure for the received symbols. The standard WBF algorithm [4] first computes for m =

1, 2, . . . , M ,

|y|min−m = min
n:n∈N (m)

|yn|. (3)

As explained below, |y|min−m| is a measure of the reliability of the mth check.

Next, WBF decoding is carried out as follows:

Step 1 For m = 1, 2, . . . , M , compute the syndrome sm =
∑

N

n=1 znHmn from z.

Step 2 For n = 1, 2, . . . , N , compute:

En =
∑

m∈M(n)

(2sm − 1)|y|min−m (4)

Step 3 Flip the bit zn for n = arg max
1≤n≤N

En.

Step 1 to 3 are repeated until all the parity check equations are satisfied or until the maximum

number of iterations Imax is reached.

WBF decoding achieves better performance than BF decoding by making more accurate

decisions for each bit based on a flipping criteria that considers soft reliability information. For

the AWGN channel, a simple measure of the reliability of a received symbol yn is its magnitude,

|yn|. The larger the magnitude |yn| is, the larger the reliability of the corresponding hard-decision

digit zn is. For m = 1, 2, . . . , M , |y|min−m given in equation (3) can be viewed as a measure of

the reliability of the syndrome sm computed with zn’s, n ∈ N (m). For n = 1, 2, . . . , N , the

larger En is, the less likely the hard decision zn is, which is why the bits with the largest values

for En are flipped first.

3.3 Quantized WBF decoding

From the practical point of view, WBF decoding is problematic for VLSI implementations,

because a real number |y|min−m must be stored for each check, these real numbers must be

added to determine the reliability En of each bit, and the bits must then be sorted according

to their values of En. In a more practical version of WBF decoding, which we call “quantized

WBF” (QWBF) decoding, each bit is assigned a “high” or “low” reliability based on whether |yn|
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is greater or less than a pre-assigned threshold ∆1. Then, for each check, if all the bits involved

in that check have “high” reliability, the check is also considered to have high reliability, but

if even a single bit involved in the check has “low” reliability, the check is considered to have

low reliability. High-reliability checks are assigned a value of |y|min−m = 2, while low-reliability

checks are assigned a value of |y|min−m = 1. Next, QWBF decoding proceeds as follows:

Step 1 For m = 1, 2, . . . , M , compute the syndrome sm =
∑

N

n=1 znHmn from z.

Step 2 For n = 1, 2, . . . , N , compute:

En =
∑

m∈M(n)

(2sm − 1)|y|min−m (5)

Step 3 Flip all bits zn for which En exceeds a pre-defined threshold ∆2.

Step 1 to 3 are repeated until all the parity check equations are satisfied or until the maximum

number of iterations Imax is reached.

Note that in QWBF decoding, two pre-determined thresholds ∆1 and ∆2 have to be specified.

In the simulations described below, these thresholds were chosen by empirical testing. Our chosen

thresholds should be reasonably good, although we cannot be certain of how far they are from

the optimal thresholds; a theoretical analysis would certainly be desirable.

Compared to WBF decoding, QWBF decoding has the advantages that only one bit needs

to be stored to record the reliability of each bit and check, that all the addition is simple integer

arithmetic, and that no sorting of the bits by reliability needs to be done. For these reasons,

we consider QWBF decoding to be much more realistic than WBF decoding for our target

applications.

4 Shuffled BF and QWBF decoding

As mentioned in Section 1, standard BF decoders require an undesirably large number of it-

erations to converge. Shuffled BF (or QWBF) decoding is designed to accelerate the decoding

process. Let us first assume, for the sake of argument, that the bits are processed serially; one

bit is processed in each unit time. During a given iteration of decoding, we assume that the n-th

bit is processed in the n-th unit of time. If the flipping condition is satisfied, this bit is flipped.

Generally, the new value of zn is more likely to be correct than the old one. Consequently, the

syndromes {sm : m ∈ M(n)} based on the new value of zn are more reliable than the corre-

sponding old ones. In shuffled BF (or QWBF) decoding, at each iteration, once a bit is flipped,
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all the syndromes involving this bit are flipped too and the processing of the remaining bits is

based on these new syndrome values. Because the more reliable bit values are taken advantage

of as soon as available, the shuffled version of BF (or WBF or QWBF) decoding is expected to

converge faster than the standard one.

Shuffled BF is carried out as follows.

Initialization Compute s = (s1, s2, . . . , sM) = z ·HT

Step 1 For n = 1, 2, . . . , N , if |Fn| ≥ δ, flip zn and flip {sm : m ∈ M(n)}.

Step 2 Repeat step 1 until s = 0 or Imax is reached.

Similarly, the shuffled WBF is carried out as follows.

Initialization For n = 1, 2, . . . , N , assign each bit a value zn, and a one-bit reliability |yn|. For

m = 1, 2, . . . , M , compute the reliability value |y|min−m using the one-bit reliabilities |yn|

and the threshold ∆1.

Step 1 For n = 1, 2, . . . , N , compute:

En =
∑

m∈M(n)

(2sm − 1)|y|min−m (6)

Step 2 For n = 1, 2, . . . , N , if |En| ≥ ∆2, flip zn and flip {sm : m ∈ M(n)}.

Step 1 to 2 are repeated until all the parity check equations are satisfied or Imax is reached.

5 Group-shuffled schemes

An entirely serial implementation of shuffled BF decoding would be desirable from the point of

view of performance, but is not very realistic in terms of VLSI implementation. On the other

hand, an entirely parallel implementation is not so desirable, nor even realistic given the large

block-lengths that one would expect to use, as well as the large values dc and dv for EG LDPC

codes.

Thus, a more realistic scenario is for the bits in an EG LDPC code to be processed in groups

of bits, where the groups are processed serially, but the bits within a group are processed in

parallel. We call such decoding schemes “group-shuffled” decoding.
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Assume the N bits of a codeword are divided into G groups and each group contains N

G
= NG

bits (assuming NmodG = 0 for simplicity). Grouped shuffled BF decoding is carried out as

follows:

Initialization Compute s = (s1, s2, . . . , sM) = z ·HT

Step 1 For g = 1, 2, . . . , G,

i) process the following step in parallel: For g ·NG +1 ≤ n ≤ (g +1) ·NG +1, if |Fn| ≥ δ,

flip zn.

ii) process the following step in parallel: For g ·NG +1 ≤ n ≤ (g +1) ·NG + 1, if |Fn| ≥ δ,

flip {sm : m ∈ M(n)}.

Step 2 Repeat step 1 until s = 0 or Imax is reached.

Group-shuffled QWBF decoders operate in an analogous way; the full details are omitted

here.

6 Replica Group-shuffled BF and QWBF decoding

In group-shuffled BF (or QWBF) decoding, as presented in the previous section, the groups

of bits are processed sequentially. After one iteration is complete, the group of bits that is

processed last will be most reliable, because it has used values for all the previously processed

bits that have been updated. On the other hand, one can imagine creating a second decoder,

which processed the groups in a different order; in this decoder, the reliability ordering of the

groups would be different, depending on the ordering.

To take advantage of this property of group-shuffled BF (or QWBF) decoders, in a replica

group-shuffled BF (or QWBF) decoder [9], two or more group-shuffled subdecoders (“replicas”)

based on different updating orders operate simultaneously and cooperatively. After each group

of bits is processed, the replica sub-decoders exchange bit values with each other (according to

the rule that each replica transmits those bit values that it just processed, and the other replicas

copy the transmitted bit values) and then the next group of bits is processed in each replica

based on these new values.

In general, replica-shuffled decoders obtain faster decoding at the price of duplicating sub-

decoders. Note, however, that replica-shuffled decoders are only really faster if the cost of
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transmitting and copying bit values between decoders is much less than the cost of updating bit

values.

To demonstrate how a replica group-shuffled BF decoder operates, we consider the case

when there are just two sub-decoders, each of which divides the bits into G groups of N/G bits.

We assume that the first sub-decoder (which we call
−→
D) processes the groups in the order the

1, 2, . . . , G, while the second sub-decoder (
←−
D) processes the groups in the order G, G− 1, . . . , 1.

Let −→s , −→z , and
−→
Fn represent the syndromes, bit values, and number of violated constraints

in the first sub-decoder
−→
D , and define notations associated with decoder

←−
D in a similar way.

Replica group-shuffled BF decoding with these two sub-decoders is then carried out as follows:

Initialization Compute −→s =←−s = z ·HT . Let −→z =←−z = z.

Step 1 For −→g = 1, 2, . . . , G in sub-decoder
−→
D , and for ←−g = G, G− 1, . . . , 1 in sub-decoder

←−
D ,

simultaneously process the two sub-decoders a according to the following rules (the arrows

over g and Fn should be understood):

i) (Update bits) Process the following step in parallel: For g ·NG+1 ≤ n ≤ (g+1) ·NG+1,

if |Fn| ≥ δ, flip zn.

ii) (Update syndromes) Process the following step in parallel: For g · NG + 1 ≤ n ≤

(g + 1) ·NG + 1, if |Fn| ≥ δ, flip {sm : m ∈ M(n)}.

iii (Exchange Information) All the bits associated with the group that was just updated

in the first sub-decoder are copied in the second sub-decoder, and vice-versa. Then

all the syndromes associated with the copied bits are updated.

Step 2 Repeat step 1 until −→s = 0 (or ←−s = 0) or Imax is reached.

Replica group-shuffled QWBF decoding is carried out in an analogous way; the full descrip-

tion is omitted here.

7 Simulation results of shuffled schemes

We present simulation results for two-dimensional (m = 2) cyclic EG LDPC codes with param-

eters (N = 4095, K = 3367), and (N = 16373, K = 14179). The codes were represented using

square N by N parity check matrices.

Figure 1 depicts the error rates for iterative decoding of the (4095, 3367) EG-LDPC code

using standard BF decoding and group-shuffled BF decoding. The word error rate and bit error
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rates are simultaneously shown in many of our plots; obviously the bit error rates are the lower

curves. The number of groups used in the group-shuffled decoder was G = 2, G = 16 and

G = 4095. The maximum number of iterations Imax for the group-shuffled decoder was only

two. Note that using 16 groups is nearly as good as 4095 (fully serial operation). In fact, for

all the simulation results shown, using four groups was also nearly as good as using 16. Note

also that the word error rate performance using 16 groups and two iterations in group-shuffled

decoding is nearly as good as as that using 10 iterations in standard BF decoding. Figure 2

shows similar results for the (16383, 14179) EG-LDPC code.

Figure 3 depicts the error rates of iterative decoding of the (4095, 3367) EG-LDPC code using

standard QWBF decoding and the group-shuffled QWBF algorithm, for G = 2, 16, 4095. The

maximum number of iterations for group shuffled BF was set to be 5. The threshold parameters

used had values ∆1 = 0.09 and ∆2 = 8.0. There is clearly a performance gain from using QWBF

instead of standard BF (about .5 dB at a BER of 10−5). Again we see that a group-shuffled

QWBF decoder with 16 groups using fewer iterations can perform roughly as well as a standard

QWBF decoder that uses more iterations.

8 Simulation results of replica group-shuffled schemes

Figure 4 depicts the error rates for iterative decoders of the (4095, 3367) EG-LDPC code using

standard BF and replica group-shuffled BF decoding with four subdecoders, for G = 2, 16, 4095.

The maximum number of iterations for the replica group-shuffled BF was set to be 2. We observe

some small improvement in performance compared to using ordinary group-shuffled BF decoding

(about .1-.2 dB at a BER of 10−5). Note that the WER performance of replica group-shuffled

BF decoding with four subdecoders and Imax = 2, and G = 2 (in fact, for G ≥ 4), is now

approximately the same as that of the standard BF with maximum number of 10, and the BER

performance is even better.

Figure 5 depicts the error rates of the same code decoded by the standard and replica group-

shuffled BF methods, with Imax = 20 and Imax = 10, respectively. The point of this figure is more

theoretical than practical–to see whether replica group-shuffled BF decoding clearly outperforms

standard BF decoding if Imax is large enough. We see that it does indeed outperform standard

BF decoding for both WER and BER. This can partly explained by the fact that less error

propagation occurs in the replica group-shuffled method.

Figure 6 shows the error rates using replica group-shuffled QWBF decoding using four repli-

cas and G = 16. This plot should be considered a preliminary one, because the thresholds used
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Figure 1: Error rates of the (4095, 3367) EG-LDPC code with the standard BF and group shuffled

BF algorithm, for G = 2, 16, 4095 and at most 2 iterations.

(∆1 = 0.09 and ∆2 = 8.0) were not optimized in any way (we simply used the same thresholds

as those chosen for the decoder that did not use replicas). The performance is noticeably better

than that of replica group-shuffled BF decoding, but only slightly better than group shuffled

QWBF decoding (without using replicas). On the other hand, it is possible that when the

thresholds are further optimized, there will be a greater performance improvement.

8.1 Performance at very low error rates

An important issue in optical communication systems and in storage systems is the performance

at very low error-rates. The question that must be answered is whether there is a hidden error

floor in the high SNR regime. This question is hard to answer through simulations, but we can

make some progress, and set worse-case bounds on the error floor, by using importance sampling

for the case of BF decoding.

To obtain performance curves for very low error rates, we generated received blocks with a

fixed number n of bit flips. Of course, although the number n of bit flips was fixed, the positions

of the bit flips were generated randomly, and changed for each received block. For each n, we

then performed simulations to find the corresponding error performance P (n). We know that

no errors at all will occur if n ≤ t, where t is the bounded error correcting capability of the

code t = b(dmin − 1)/2c (this corresponds to the reasonable assumption that the decoder has a
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Figure 2: Error rates of the (16383.14179) EG-LDPC code with the standard BF and group

shuffled BF algorithm, for G = 2, 16, 4095 and at most 2 iterations.
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Figure 3: Error rates of the (4095, 3367) EG-LDPC code using standard QWBF decoding and

the group shuffled QWBF algorithm, for G = 2, 16, 4095 and at most 5 iterations.
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Figure 4: Error rates of the (4095, 3367) EG-LDPC code using standard BF decoding and the

replica group shuffled BF algorithm with four subdecoders, for G = 2, 16, 4095 and at most 2

iterations.
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Figure 5: Error rates of the (4095, 3367) EG-LDPC code using standard BF decoding and the

replica group shuffled BF algorithm with four subdecoders, for G = 2, 16, 4095 and at most 10

iterations.
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Figure 6: Error rates of the (4095, 3367) EG-LDPC code using standard QWBF decoding and the

replica group shuffled BF algorithm with four subdecoders, for G = 16 and at most 2 iterations.
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Figure 7: WER of the (4095, 3367) EG-LDPC code using standard BF decoding and the replica

group shuffled BF algorithm with four subdecoders, for G = 2, 16, 4095, for a fixed number of

errors and Imax = 2.
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Figure 8: Replica group-shuffled BF decoding of the (4095,3367) EG LDPC code for fixed

number of errors with 4 subdecoders and G = 16, Imax = 2. The point of this figure is to show
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Figure 9: Replica group shuffled BF decoding of the (4095,3367) EG LDPC code in high SNR

regime with 4 subdecoders and G = 16, Imax = 2. Note that the worst-case (upper bound)

performance is never more than 1 dB worse than the likely-case (extrapolated) performance,

indicating that there is no error floor.
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Figure 10: Error rate of the (16383, 14179) EG-LDPC code with the standard BF and group

replica shuffled BF algorithm with four subdecoders, for G = 2, 4, 8, 16, 4095 and at most 2

iterations.

built-in bounded-error decoder and/or that the possibility of a decoding failure when n ≤ t is

completely negligible).

The overall error performance P was then obtained by the average

Ps =
N
∑

n=t+1

P (n)

(

N

n

)

pn

e (1− pe)
N−n (7)

For BPSK signaling over AWGN channel, the transition probability pe = Q(
√

REb/N0), where

R is the code rate and Eb/N0 is the signal to noise ratio per information bit.

Figure 7 depicts the error performance of the standard BF and replica group-shuffled BF

decoding methods with 4 subdecoders for decoding the (4095,3367) EG LDPC code with a fixed

number of errors. The maximum number of iterations for replica shuffled BF was set to 2.

Using the results from figure 7, we can determine worst-case, best-case, and extrapolated

performances of this decoder down to very low error rates. For WER’s smaller than 10−4, no

reliable evaluation of P (n) was possible, we computed: (a) a worst-case upper bound on (7)

by assuming the same P (nmin) as the smallest simulated for weights n′, t < n′ < nmin; (b) a

best-case lower bound on (7) by assuming P (n) = 0 for weights n′, t < n′ < nmin; and (c)

a likely-case approximation by extrapolating P (n′) for weights n′, t < n′ < nmin. Figure 8

depicts these extrapolations. The worst-case upper bound is derived using the horizontal line
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in this figure, the best-case lower bound is derived using the vertical line, and the likely-case

extrapolation is derived using the curved line.

Figure 9 depicts the performance of the replica group-shuffled BF decoder for the (4095,3367)

EG LDPC codes in high SNR regime based on Figure 8. Note that the best-case and likely-case

scenarios are nearly identical. More importantly, the worst-case scenario is only slightly worse

(less than 1 dB) than the likely-case scenario for BER’s between 10−10 and 10−15. This means

that we can guarantee that there will be no significant error floor using this decoding method.

Finally, Figure 10 depicts the error rate of iterative decoding of the (16383, 14179) EG-

LDPC code with standard BF and group replica shuffled BF algorithm with four subdecoders,

for G = 2, 16, 4095. The maximum number of iterations for group replica shuffled BF was set

to be 2. We observe that the WER performance of group replica shuffled BF decoding with

four subdecoders and maximum number of 2, and group number larger or equal to four, are

approximately the same as that of the standard BF with maximum number of 10. These results

are similar to those for the (4095, 3367) code.

9 Conclusions

We have described many different decoders and it may be worthwhile to give some final point-

ers to orient the reader. The major conclusion is that group-shuffled BF decoders and replica

group-shuffled BF or QWBF decoders give good performance using a very small number (two)

of iterations and four or more groups, comparable or better that of standard decoders with ten

or more iterations. The gain obtained by upgrading from BF to QWBF decoders is rather large

(probably around .5 dB), but one must quantize the channel output using one bit (“high” versus

“low” reliability). Replica group-shuffled decoders using four replicas also have a further perfor-

mance advantage compared to ordinary group-shuffled decoders, but the gain is not very large.

Finally, we have demonstrated that group-shuffled and replica group-shuffled BF decoders will

not have a significant error floor. Although it would be harder to demonstrate using importance

sampling, there is no reason to expect error floors for QWBF decoders either.
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