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Abstract

Highly dispersive nature of ultra-wideband (UWB) channels makes time of arrival (TOA) esti-
mation extremely challenging, where the leading-edge path is not necessarily the strongest path.
Since the bandwidth of a received UWB signal is very large, the Nyquist rate sampling becomes
impractical, hence motivating lower complexity and yet accurate ranging techniques at feasible
sampling rates. In this paper, we consider TOA estimation based on symbol rate samples that
are obtained after a square-law device. An adaptive threshold selection approach based on the
minimum and maximum values of the energy samples is introduced, and optimal values of the
thresholds for different signal to noise ratios (SNRs) are investigated via simulations. Theoreti-
cal closed form expressions are derived for mean absolute TOA estimation error, and compared
with simulations using IEEE 802.15.4a channel models.
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Abstract— Highly dispersive nature of ultra-wideband (UWB)
channels makes time of arrival (TOA) estimation extremely
challenging, where the leading-edge path is not necessarily the
strongest path. Since the bandwidth of a received UWB signal is
very large, the Nyquist rate sampling becomes impractical, hence
motivating lower complexity and yet accurate ranging techniques
at feasible sampling rates. In this paper, we consider TOA
estimation based on symbol rate samples that are obtained after
a square-law device. An adaptive threshold selection approach
based on the minimum and maximum values of the energy
samples is introduced, and optimal values of the thresholds
for different signal to noise ratios (SNRs) are investigated via
simulations. Theoretical closed form expressions are derived
for mean absolute TOA estimation error, and compared with
simulations using IEEE 802.15.4a channel models.

I. I NTRODUCTION

High time resolution is one of the key benefits of ultra-
wideband (UWB) signals for precision ranging. Due to ex-
tremely short duration of transmitted UWB pulses, UWB re-
ceivers, as opposed to typical narrow-band wireless receivers,
enjoy being able to observe individual multipath components;
and the accuracy of TOA estimation is characterized by how
finely the first arriving signal path is identified, which may not
be the strongest.

UWB receivers typically have to operate at very low sam-
pling rates. This makes it difficult to effectively capture the
energy at each individual multipath component using Rake
receivers, as it is extremely difficult to synchronize to each tap.
A chip-spaced sampling of the channel can be used to detect
the chip-spacedobservation of the channel impulse response
(CIR), which typically carries a fraction of the available energy
of the actual CIR. Note that higher rate samples (such as
chip-rate or frame-rate) can be achieved by using symbol-
spaced sampling and multiple training symbols, and shifting
the signal by desired sampling period at each symbol. Another
practical concern is the requirement to have a-priori knowledge
of the received pulse shape for match filter implementation,
which may change from an environment to another and
even between different multipath components [1]. Therefore,
it is difficult to exactly match to the received pulse-shape,
especially when considering the analog implementations of
the template waveforms.

Typical approaches for UWB ranging in the literature are
based on matched filtering (MF) of the received signal. Corre-
sponding the time index that maximizes the MF output to the
TOA estimate is probably the simplest ranging technique [2]-
[6]. These approaches have limited TOA precision, as the
strongest path is not necessarily the first arriving path. In
order to determine the leading edge of a received signal,
Lee and Scholtz proposed to use a generalized maximum-
likelihood (GML) approach to search the paths prior to the

strongest path [7]; however, the information included in the
paths after the strongest path were neglected, which can be
used to enhance strongest path detection. In [8], the leading
edge detection problem is taken as a break-point estimation
of the actual signal itself, where temporal correlation arising
from the transmitted pulse is used to accurately partition the
received signal into two zero-mean Gaussian distributed time-
series with different covariance matrices. In both [7], [8], very
high sampling rates were considered, which is not practical
in many scenarios; a threshold-based technique with lower-
rate samples was discussed in [9]. In another lower sampling-
rate approach, a two-step ranging algorithm is considered,
where an energy detection step gives coarse information about
the signal’s whereabouts, and a correlation based approachis
applied into the detected energy block(s) for refinement [10].

Due to above practical concerns and limitations, energy
detection based ranging becomes more feasible. Even though
it suffers more from noise due to a square-law device, energy
detection does not require accurate timing or pulse shapes.
Once collecting the energy samples at the output of a square-
law device, the TOA estimation can be considered as a
problem of leading edge detection (or change/break-point
detection) in noise. In this paper, we consider TOA estima-
tion of the received signal based on symbol-rate samples,
and analyze via theory and simulations the performance of
threshold based leading edge detection techniques. A simple
normalized threshold comparison (TC) approach is proposed,
where only the minimum and maximum energy values are
used. Dependence of the optimum threshold and mean absolute
error (MAE) on signal to noise ratio (SNR) and channel model
are investigated. Theoretical expressions for MAE are derived
for the fixed threshold case, and compared with simulations.
Also, maximum energy selection (MES) algorithm, as well as
MES supported with search-back step (MES-SB) are analyzed,
and dependence of optimal search-back window to the SNR is
demonstrated. Simulation results reveal the performance trade-
off’s of the algorithms for different channel models and block
sizes.

II. SYSTEM MODEL

Let the received UWB multipath signal be represented as

r(t) =

∞
∑

j=−∞

djωmp

(

t − jTf − cjTc − τtoa

)

+ n(t) (1)

where frame index and frame duration are denoted byj and
Tf , Ns represents the number of pulses per symbol,Tc is the
chip duration,Ts is the symbol duration,τtoa is the TOA of
the received signal, andNh is the possible number of chip
positions per frame, given byNh = Tf/Tc. Effective pulse
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Fig. 1. Sampling of the received signal after energy detection.

after the channel impulse response is given byωmp(t) =√
E
∑L

l=1 αlω(t− τl), whereω(t) is the received UWB pulse
with unit energy,E is the pulse energy,αl and τl are the
fading coefficients and delays of the multipath components,
respectively. Additive white Gaussian noise (AWGN) with
zero-mean and double-sided power spectral densityN0/2 and
varianceσ2 is denoted byn(t). No modulation is considered
for the ranging process.

In order to avoid catastrophic collisions, and smooth the
power spectral density of the transmitted signal, time-hopping
codes c

(k)
j ∈ {0, 1, ..., Nh − 1} are assigned to different

users. Moreover, random-polarity codesdj ∈ {±1} are used
to introduce additional processing gain for the detection of
desired signal, and smooth the signal spectrum.

A. Sampling of the Received Signal After a Square-law Device

In the sequel, we assume that a coarse acquisition on the
order of frame-length is acquired in (1), suchτtoa ∼ U(0, Tf ),
whereU(.) denotes the uniform distribution. As for the search
region, the signal within time frameTf plus half of the next
frame is considered to factor-in inter-frame leakage due to
multipath, and the signal is then input to a bank of square-law
devices each with an integration interval ofTb (see Fig. 1).

The number of samples (or blocks) is denoted byNb =
3
2

Tf

Tb
, andn ∈ {1, 2, ..., Nb} denotes the sample index with

respect to the starting point of the uncertainty region. With a
sampling interval ofts (which is equal to block lengthTb),
the sample values at the output of the square-law device are
given by

z[n] =

Ns
∑

j=1

∫ (j−1)Tf+(cj+n)Tb

(j−1)Tf+(cj+n−1)Tb

|r(t)|2dt , (2)

and the performance can be further improved by using the
energy inNT symbols. The bit energy when usingNs pulses
becomesEb = NsE. Basic TOA estimation algorithms that
operate onz[n] values for leading edge detection will be
presented and formulated in the next section.

III. TOA E STIMATION ALGORITHMS

Choosing the maximum energy output to be the leading
edge is the simplistic way of achieving a TOA estimation.
Using MES, the TOA estimate with respect to the beginning
of the time frame is evaluated aŝtMES =

[

argmax
1≤n≤Nb

{

z[n]
}

−

0.5
]

Tb = (nmax − 0.5)Tb, where the center of the block
is selected as the TOA estimate. Note that on the average,
selecting the center of the block gives a resolution of quarter
of the block size. However, the strongest energy block in many
cases may not be the leading energy block (Fig. 3), and the
MES therefore hits an error-floor even in high signal to noise
ratio (SNR) region. Also, the performance of it degrades with
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Fig. 2. Illustration of the normalized adaptive threshold depending on the
minimum and maximum energy samples.

Nb, since it becomes more likely to identify a noise only block
as the maximum energy block [11].

Received samples can be also compared to an appropri-
ate threshold, and the first threshold-exceeding sample in-
dex can be corresponded as the TOA estimate, i.e.t̂TC =
[

min
{

n|z[n] > ξ
}

− 0.5
]

Tb, where ξ is a threshold that
must be set based on the received signal statistics. Given the
minimum and maximum energy sample values, the following
normalized adaptive threshold can be used (see Fig. 2)

ξnorm =
ξ − min{z[n]}

max{z[n]} − min{z[n]} . (3)

Optimal value ofξnorm (i.e., ξopt) changes depending on the
SNR as discussed later in the paper.

In order to improve the performance of the TC in low SNRs,
the energy samples prior to the maximum should be searched.
The TOA estimate with a thresholding and backward search is
then given bŷtMES−SB =

[

min{n|z̃[n] < ξ}−0.5+(nmax−
wsb − 1)

]

Tb, wherez̃[n] =
[

z[nmax − wsb] z[nmax − wsb +

1] ... z[nmax]
]

. Search-back window in number of samples
is denoted bywsb, which is set based on the statistics of the
channel, and is⌈Wsbns/Tb⌉ with Wsb denoting the window
size in time units. Note that the accuracy of this approach
is also limited by the accuracy of the MES. The basic TOA
estimation algorithms are summarized in Fig. 3.

IV. ERRORANALYSIS FOR TC BASED TOA ESTIMATION

In this section, mean absolute error (MAE) of the TC
based TOA estimation is analyzed, and closed form error
expressions are presented. First, the probability of detection
of a certain block is derived, which leads us to the derivation
of MAE of the TOA estimate for the case of uniformly
distributed TOA. Assume initially that the delay of the leading-
edge energy block is fixed. Letntoa denote the first arriving
energy block index,̂n denote the estimated block index, and
n = 1, 2, · · · , NB denote the block indices where the energy
block is being searched. Then, fixing the value of threshold
ξ, probability of detecting an arbitrary blocknhyp to be the
energy block is calculated as1

PD(nhyp) = P (n̂ = nhyp)

=

[ nhyp−1
∏

n=1

P
(

z[n] < ξ
)

]

× P
(

z[nhyp] > ξ
)

,

(4)

wherez[n] has a centralized Chi-square distribution forn =
1, 2, · · · , ntoa − 1 (corresponding to noise-only blocks), and
non-centralized Chi-square distribution forn = ntoa. The

1Note that this is valid fornhyp ≥ 2. For nhyp = 1, the terms
corresponding to noise blocks become unity.
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Fig. 3. Illustration of basic TOA estimation techniques based on energy samples.

cumulative distribution functions (CDFs) of these centralized
and non-centralized Chi-square random variables are givenby

Pchi2(ξ) = P
(

z[n] < ξ
)

= 1 − exp

(

− ξ

2σ2

)M/2−1
∑

l=0

1

l!

(

ξ

2σ2

)2

, (5)

Pncx2(En, ξ) = P
(

z[n] < ξ
)

= 1 − QM/2

(

En

σ
,

√
ξ

σ

)

,

(6)

where σ2 = N0

2 is the noise variance,Qx(.) denotes the
Marcum-Q function with parameterx, and En is the signal
energy within thenth block, whose PDF varies withn, block
size, and channel model. Note thatnhyp = ntoa corresponds
to correct detection. Fixing the value ofξ, three cases can be
considered fornhyp. If nhyp < ntoa, we have

PD(nhyp) = [Pchi2(ξ)]
nhyp−1

(

1 − Pchi2(ξ)
)

, (7)

while on the other hand ifnhyp = ntoa,

PD(nhyp) = [Pchi2(ξ)]
ntoa−1×

∫

Entoa

(

1 − Pncx2(Entoa
, ξ)
)

p(Entoa
)dEntoa

.

(8)

If nhyp > ntoa, we can further consider two conditions. Let
Neb denote the number of noise plus energy blocks where there
exists a significant amount of energy. Ifnhyp − ntoa < Neb

PD(nhyp) = [Pchi2(ξ)]
ntoa−1×

( nhyp−1
∏

n=ntoa

∫

En

Pncx2(En, ξ)p(En)dEn

)

×
∫

Enhyp

(

1 − Pncx2(Enhyp
, ξ)
)

p(Enhyp
)dEnhyp

,

(9)

while, if nhyp − ntoa ≥ Neb

PD(nhyp) = [Pchi2(ξ)]
nhyp−Neb−1

(

1 − Pchi2(ξ)
)

×
ntoa+Neb−1

∏

n=ntoa

∫

En

Pncx2(En, ξ)p(En)dEn . (10)

In order to carry out the evaluation of the detection proba-
bilities, the energy PDFsp(En) are obtained via simulations

(see Fig. 6) with considering the uniformly distributed delay
offsets of the individual paths within the blocks. Note thatin
order to calculate closed form expressions for the detection
probabilities in the case of normalized thresholds presented
in (3) rather than fixed thresholds, the PDFs ofξnorm can be
used. However, our simulations show that especially for large
Eb/N0 values,ξnorm is highly correlated with the energies in
the first couple of energy blocks, with correlation coefficients
being on the order of0.6 at Eb/N0 = 26dB for the first
four energy plus noise blocks. This implies that the PDFs of
ξnorm also has to be conditioned onEn, which makes closed
form error analysis cumbersome and analytically intractable
for variableξ.

Given ntoa to be fixed, the MAE can be calculated by
averaging over the probability of detection of different TOA
estimations:

eabs[ntoa] = E
[

∣

∣n̂ − n
∣

∣

]

=

Nb
∑

n=1

PD(n) ×
∣

∣n − ntoa

∣

∣. (11)

In other words, the absolute error corresponding to each block
are weighted by the probability of detecting that particular
block. For ntoa ∼ U(1, NB), we can averageeabs[ntoa] to
obtain the average error as

e
(avg)
abs =

Nb
∑

ntoa=1

eabs[ntoa]p(ntoa) =
1

Nb

Nb
∑

ntoa=1

eabs[ntoa] .

(12)

V. RESULTS AND DISCUSSION

In all the simulations that are presented in this section,
the channel models CM1 (residential LOS) and CM2 (resi-
dential NLOS) of IEEE802.15.4a are employed. The channel
realizations are sampled at8GHz, 1000 different realizations
are generated, and each realization has a TOA uniformly
distributed within(0, Tf ). A raised cosine pulse ofTc = 1ns is
considered for all scenarios. After introducing uniformlydis-
tributed delays, energies are collected within non-overlapping
windows to obtain decision statistics. Two critical statistics for
the accuracy of the TOA estimation at this step are the PDF
of the energy of the maximum energy block (Fig. 4), and the
PDF of the delay between the maximum energy block and
the leading edge block (Fig. 5), where distinctions between
LOS CM1 and NLOS CM2 channel models can be clearly
observed. Also in Fig. 6, PDFs of the energies within the
first four blocks including and after the leading edge block
are presented. These PDFs are used to evaluate the theoretical
expressions derived in previous section. The other simulation
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energy block with respect to the first energy block for CM1 andCM2
(Tb = 1ns).

parameters are (unless otherwise stated)Tf = 200ns, B =
4GHz,NT = 1, andNs = 1. Both1ns and4ns are considered
for Tb.

A. Normalized Threshold Characteristics of CM1 and CM2

TOA estimation errors with respect to the employed nor-
malized threshold for variousEb/N0 are given in Fig. 7 for
CM1 and in Fig. 8 for CM2. If SNR estimate is available,
the valueξnorm that minimizes the MAE can be selected. On
the other hand, it is observed that selectingξnorm to be on
the order of0.8 will yield near optimal performance at almost
every Eb/N0 under CM2, while for CM1 it must be closer
to 0.2 at high Eb/N0, but may be selected as0.4 to cover
a larger range of SNR values. Regardless of the threshold
selection, atEb/N0 < 20dB the MAE becomes intolerably
high for sub-meter resolution ranging. The optimal threshold
levels with respect toEb/N0 for CM1 and CM2, as well as the
corresponding minimum MAE values are depicted in Fig 9, 10
for better visualization.
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Fig. 6. PDFs of block energies in the first four energy blocks (Tb = 4ns).
Uniformly distributed delay of the first arriving path withinthe block interval
is considered.

B. Comparison of TC Based TOA Estimation Using Theory
and Simulations

The theoretical and simulated performances of threshold
based TOA estimators when using a fixed threshold of0.1×Eb

at all Eb/N0 are given in Fig. 11 for CM1 (Tb = 4ns). The
PDFs obtained via simulations in Fig. 6 are used to average
the performances over the energy distributions. The PDFs of
the first 8 blocks including and afterntoa are included only,
considering the rest of the blocks to be noise-only blocks.
Even though the error expression in (12) shows a good match
with simulation at lowEb/N0 (where the ranging error is
unacceptably bad), it yields optimistic results compared to
simulations at largeEb/N0.

The performance of the threshold based TOA estimation
can be improved using an adaptive threshold, as discussed in
previous sections. Givenmax{z[n]} andmin{z[n]}, optimum
adaptive normalized threshold values that corresponds to the
operatedEb/N0 can be used to have a superior performance
compared to a fixed threshold (excluding very high SNRs).
However, this requires estimation of the SNR, which is not an
easy task in UWB due to extremely low power operation char-
acteristics. Instead, an adaptive normalized thresholdξnorm

can be used at all SNR values. As an example,ξnorm = 0.5
is used in Fig. 11, which shows to match with the optimum
threshold results atEb/N0 = 22dB, and performs suboptimal
otherwise.

As a final remark, atEb/N0 = 26dB, it is observed that
a fixed threshold performs better than the optimal adaptive
threshold. This is due to the fact that optimal threshold values
obtained via simulations are optimalgiven the knowledge of
only max{z[n]} and min{z[n]}. The fixed threshold values
used for demonstrating theoretical and simulation resultsin
Fig. 11 assumes the knowledge of the received energy value,
which is not exploited in the adaptive threshold estimation.

C. Dependence of Optimal Search-back Window on the SNR

In Fig. 12, the MAE performances with respect toWsb are
investigated withξnorm fixed to 0.4 and 0.8 for CM1 and
CM2, respectively. It is observed that for CM1, a search-back
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window on the order of30ns will yield satisfactory results for
a large range of SNR values. On the other hand, even though
dependency of the MAE toWsb is weaker, fixing it to40ns
will yield slight improvements in the estimation accuracy.

D. Comparison of Performances of Various TOA Estimation
Algorithms

In Figs. 13-14, the performances of different energy de-
tection based TOA estimation algorithms are tested in IEEE
802.15.4a CM1 and CM2. Theξopt is set to0.4 for CM1 and
to 0.8 for CM2, with the assumption that there is no SNR
estimate available. Also, correspondingWsb are set to30ns
and40ns for CM1 and CM2, respectively (as evaluated in the
previous sections). It is observed that the TC performs wellat
high Eb/N0, while the MES is better at higher noise variance.
The reason for TC performing poorly in general at low SNR
region is frequent threshold exceeding caused by noise. On
the other hand, when the SNR is large, the TC does not face
an early error floor as opposed to the MES. Using a block
of 1ns rather than4ns yields on the order of a nanosecond
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improvement in the accuracy for the large SNR region, which
can be explained by previous discussion that the average TOA
estimation accuracy is on the order of quarter the block length.

The performance difference under CM1 and CM2 is on the
order of 3dB to 6dB in favor of CM1 for low to moderate
SNR ranges. This can be explained by Fig. 4, where the
probability of large energy values is shown to be much larger
for CM1 compared to CM2. On the other hand, once the
TOA estimation errors hit the error floor, algorithms perform
slightly better under CM2 than CM1. The explanation for this
phenomena comes with Fig. 5, where it is indicated that even
though the energy values are small, they are more frequently
closer to the leading edge for CM2.

VI. CONCLUSION

Various TOA estimation algorithms for low sampling rate
UWB systems based on energy detection are analyzed. An
adaptive threshold selection approach that makes use of the
minimum and maximum energy samples is introduced, and
optimum threshold values are demonstrated via simulationsfor
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CM1 and CM2 channels. Closed form expressions for MAE
for the fixed threshold case are derived and compared with
simulations, yielding good match at low to moderateEb/N0

ranges. Simulations show that the maximum energy selection
supported with a search-back step performs better than other
algorithms except the TC algorithm at very high SNR.

REFERENCES

[1] R. Qiu, “A study of the ultra-wideband wireless propagation channel
and optimum UWB receiver design,”IEEE J. Select. Areas Commun.,
vol. 20, no. 9, pp. 1628–1637, Dec. 2002.

[2] W. Chung and D. Ha, “An accurate ultra wideband (UWB) ranging
for precision asset location,” inProc. IEEE Conf. Ultrawideband Syst.
Technol. (UWBST), Reston, VA, Nov. 2003, pp. 389–393.

[3] B. Denis, J. Keignart, and N. Daniele, “Impact of NLOS propagation
upon ranging precision in UWB systems,” inProc. IEEE Conf. Ultraw-
ideband Syst. Technol. (UWBST), Reston, VA, Nov. 2003, pp. 379–383.

[4] K. Yu and I. Oppermann, “Performance of UWB position estimation
based on time-of-arrival measurements,” inProc. IEEE Conf. Ultraw-
ideband Syst. Technol. (UWBST), Kyoto, Japan, May 2004, pp. 400–404.

8 10 12 14 16 18 20 22 24 26

10
1

E
b
/N

0
 (dB)

M
A

E
 (

ns
)

MES (T
b
=4ns)

TC (T
b
=4ns)

MES−SB (T
b
=4ns)

MES (T
b
=1ns)

TC (T
b
=1ns)

MES−SB (T
b
=1ns)

Fig. 13. Absolute error plots for different algorithms with respect to
Eb/N0 (CM1, ξnorm = 0.4, Wsb = 30ns).

14 16 18 20 22 24 26 28 30

10
1

E
b
/N

0
 (dB)

M
A

E
 (

ns
)

MES (T
b
=4ns)

TC (T
b
=4ns)

MES−SB (T
b
=4ns)

MES (T
b
=1ns)

TC (T
b
=1ns)

MES−SB (T
b
=1ns)

Fig. 14. Absolute error plots for different algorithms with respect to
Eb/N0 (CM2, ξnorm = 0.8,Wsb = 40ns).

[5] A. Rabbachin and I. Oppermann, “Synchronization analysis for UWB
systems with a low-complexity energy collection receiver,” in Proc.
IEEE Conf. Ultrawideband Syst. Technol. (UWBST), Kyoto, Japan, May
2004, pp. 288–292.

[6] R. Fleming, C. Kushner, G. Roberts, and U. Nandiwada, “Rapid acquisi-
tion for ultra-wideband localizers,” inProc. IEEE Conf. Ultrawideband
Syst. Technol. (UWBST), Baltimore, MD, May 2002, pp. 245–249.

[7] J.-Y. Lee and R. A. Scholtz, “Ranging in a dense multipath environment
using an UWB radio link,”IEEE J. Select. Areas Commun., vol. 20,
no. 9, pp. 1677–1683, Dec. 2002.

[8] C. Mazzucco, U. Spagnolini, and G. Mulas, “A ranging technique for
UWB indoor channel based on power delay profile analysis,” inProc.
IEEE Vehic. Technol. Conf. (VTC), Los Angeles, CA, Sep. 2004, pp.
2595–2599.

[9] R. A. Scholtz and J. Y. Lee, “Problems in modeling UWB channels,” in
Proc. IEEE Asilomar Conf. Signals, Syst. Computers, vol. 1, Monterey,
CA, Nov. 2002, pp. 706–711.

[10] S. Gezici, Z. Sahinoglu, H. Kobayashi, and H. V. Poor,Ultra Wideband
Geolocation. John Wiley & Sons, Inc., 2005, in Ultrawideband Wireless
Communications.

[11] I. Guvenc and Z. Sahinoglu, “Low complexity TOA estimation for
impulse radio UWB systems using multiscale energy products,” in
Submitted to IEEE Global Telecommun. Conf. (GLOBECOM), St. Louis,
MO, Dec. 2005.


	Title Page
	Title Page
	page 2


	Threshold-Based TOA Estimation for Impulse Radio UWB Systems
	page 2
	page 3
	page 4
	page 5
	page 6


