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Abstract

Feature computation models for automatic speech recognition (ASR) systems have long been
modeled on the human auditory system. Most current ASR systems model the critical band re-
sponse and equal loudness characteristics of the auditory system. It has been postulate that more
detailed models of the human auditory system can lead to more noise-robust speech recognition.
An auditory phenomenon that is of particular relevance to robustness is simultaneous masking,
whereby dominant frequencies suppress adjacent weaker frequencies. In this paper we present a
companding-based model that mimics simultaneous masking in the front end of a speech recog-
nizer. In an automotive digits recognition task, the front end improves word error rate by 4.0%
(25% relative ot Mel cepstra) at -5 dB SNR at the cost of a 1.7% increase at 15 dB SNR.
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ABSTRACT

Feature computation modules for automatic speech recognition 

(ASR) systems have long been modeled on the human auditory 

system. Most current ASR systems model the critical band 

response and equal loudness characteristics of the auditory 

system. It has been postulated that more detailed models of the 

human auditory system can lead to more noise-robust speech 

recognition. An auditory phenomenon that is of particular 

relevance to robustness is simultaneous masking, whereby 

dominant frequencies suppress adjacent weaker frequencies. In 

this paper we present a companding-based model that mimics 

simultaneous masking in the front end of a speech recognizer. In 

an automotive digits recognition task, the front end improves 

word error rate by 4.0% (25% relative to Mel cepstra) at –5 dB 

SNR at the cost of a 1.7% increase at 15 dB SNR.

1. INTRODUCTION 

Human beings are able to recognize speech amazingly well in 

high levels of background noise. On the other hand, the 

performance of automatic speech recognition (ASR) systems 

degrades dramatically with increasing noise. Part of the reason 

for this difference lies in the fact that the auditory system 

incorporates several features that make it more robust to noise. 

Most contemporary ASR systems attempt to incorporate some of 

these features. For instance, the most common feature 

representation of speech signals in ASR systems, the MEL 

spectrum, incorporates a simplified model of Critical band 

analysis, which resolves the speech signal into overlapping 

frequency bands of increasing width, with center frequencies 

spaced like the human auditory system. Another popular feature 

representation, the perceptual linear prediction or PLP spectrum, 

incorporates models of the equal loudness characteristic as well 

as the intensity-loudness relationship present in the auditory 

system [1]. 

Several other characteristics contribute to the noise 

robustness of the auditory system, e.g. the Zwicker effect [2], 

whereby the auditory system adapts to loud signals and filters 

them out, and masking. Masking, as defined by the American 

Standards Association (ASA), is the process by which the 

threshold of audibility for one sound is raised by the presence of 

another (masking) sound [3]. Temporal masking is the 

phenomenon whereby loud sounds mask other sounds for a short 

time before and after their occurrence. Of particular relevance to 

this paper is simultaneous masking, whereby high-energy 

frequency components mask adjacent frequencies with lower 

energy. 

These phenomena allow the auditory system to concentrate 

on high-energy speech components in the received signal and 

suppress persistent and transient noise phenomena that might 

obscure comprehension of the speech. It can be expected that 

signal processing schemes for speech recognition systems that 

mimic the above phenomena would similarly improve the ability 

of ASR systems to recognize noise-corrupted speech. Over the 

years several signal-processing models that attempt to duplicate 

the processing of the peripheral auditory system (e.g. [3, 4, 5]) 

have been proposed for ASR.  The majority of these proposals 

attempt to model all the individual steps in the processing of the 

speech signal in extenso, modeling such steps as the response of 

the basilar membrane and rectification implicit in the response 

of sensory hair cells in rigorous detail. While such schemes have 

been observed to improve recognition somewhat, they have 

fallen short of the performance that their computational detail 

and complexity might promise. 

In this paper we develop a simple signal-processing 

mechanism that attempts to model the effects, but not the 

procedures, of some of the mechanisms in the human auditory 

system. In particular, the signal processing scheme, based on a 

model presented by Turicchia and Sarpeshkar [6], effectively 

implements frequency masking by the dynamic adjustments of 

gains through a companding scheme applied to a two-level filter 

bank. Although the model is not anthropomorphic in its detail, it 

exhibits the frequency masking effects, and the corresponding 

enhancement of spectral peaks noted in the auditory system. The 

original model proposed by Turicchia and Sarpeshkar was 

primarily intended for cochlear implants [7]. The model 

demonstrated that companding-based signal processing is 

effective at improving the spectral quality of tones in noise, a 

vowel in noise, and a word in noise [6]. In this paper we extend 

and modify the model to compute features that are most 

effective for computer speech recognition. Experiments on the 

CU-Move database (an extensive database of speech recorded in 

moving cars) [8] reveal that the proposed signal processing 

scheme is able to enhance spectral peaks as expected and to 

improve ASR performance significantly at very low SNRs.  

Signal processing schemes often improve recognition 

performance in “mismatched” conditions, i.e. when the 

recognizer has been trained on clean speech, but the data to be 

recognized are noisy, but fail to improve performance when the 

training data are similar to the test data (a more realistic situation 

for most applications). One of the features of our study is that it 

has been conducted with real-world recordings, under matched 
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Figure 1: Compander design 

conditions. Thus the observed improvements can be expected 

to carry to real-world scenarios.

2. THE COMPANDING MODEL FOR MASKING 

Frequency masking is a phenomenon whereby high-energy

frequency bands suppress adjacent low-energy frequencies. 

This results in a deepening of spectral valleys adjacent to 

spectral peaks. In order to effect such a phenomenon, the gain

applied to any frequency must depend on its relation to its

neighboring frequencies. Figure 1 shows the basic signal 

processing model used to perform frequency masking. The 

model follows the scheme proposed by Turicchia and 

Sarpeshkar [6]. There are four stages in each parallel channel 

of processing: A wideband filter, a compression stage, a 

narrow-band filter, and an expansion stage. The expanded 

outputs from all stages are summed to yield the final output. 

The first stage consists of a constant-Q filter that we refer 

to as the “F” filter.  The filter was designed by digitizing the 

analog filter described by

where qF is a parameter that controls the Q factor  of the filters 

and  is the inverse of the resonant frequency (CF) in radians. 

Following each F filter is a compressor that compresses

the signal by a factor that is proportional to the instantaneous

power at the output of the filter. The compressor consists of an 

envelope detector and a multiplier. The envelope detector used 

is the digital equivalent of a rectifier followed by a second-

order lowpass filter with time constant F, where  is a 

parameter and F is 1/CF of the corresponding F filter. Each

compressor compresses the output of its F filter according to 

output = input inputEnvelope(n-1)

where n is a parameter that controls the strength of the

masking effect of companding. 

Each compressor is followed by a second filter, which we 

call the “G” filter. The G filter has the same design as the F 

filter, but is controlled by an independent quality-factor

parameter qG.  The design requires qG to be greater than qF,

making the G filters narrower than the F filters. 

Figure 2: Spectrogram of sample data 

before companding (left) and after companding (right) 

Each G filter is followed by an expander that expands the 

signal by a factor that is proportional to the instantaneous

power at the output of the filter.  The expander has the same

design as the compressor, but is controlled by an independent 

parameter  in place of , and raises its envelope to the power 

(1-n)/n.  The outputs of the expanders are summed back 

together to obtain a spectrally enhanced signal. 

The key to understanding the companding model is to 

realize that each channel in Figure 1 is intended to primarily

process frequency components that lie in a narrow frequency

range around its center frequency.  All processing aspects are 

intended to impose appropriate frequency masking features on 

those frequencies. The initial F filters are wide band, and 

permit frequencies that lie in the neighborhood of the center 

frequency to alter the gain of the compressor. The G filter lets

through a significantly narrower band of frequencies around

the center frequency. Only these frequencies can alter the gain 

of the expander. Thus, if the center frequency lies in a valley,

the compression factor, being related to the energy in adjacent

high-energy bands, is greater than the expansion factor that 

depends mainly on the center frequency. On the other hand, for 

peaks, the compression and expansion are both related chiefly

to the energy in the center frequency itself and effectively

preserve the signal by undoing each other’s compression and

expansion effects. This results in a deepening of the spectral

valleys with respect to peaks. A more detailed explanation of 

the effects of companding can be found in [6].
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Figure 2 shows the spectrogram of a speech signal before 

and after it has been enhanced by the compander. The 

frequency masking effect and the enhancement of spectral 

peaks is evident in the figure. The signal is a section of an 

utterance from the CU-Move database. Recognition without

companding results in the deletion of one of the words in the

segment, whereas it is recognized in the companded signal. 
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3. SIGNAL PROCESSING FOR SPEECH 

RECOGNITION

The signal energies at the output of the expander in each of the 

channels in Figure 1 could potentially be used to directly 

obtain an estimate of the power spectrum of the signal.  

However, empirically, this has been found to be suboptimal for 

speech recognition. Instead, we compute features from the 

enhanced signal obtained by adding the channels back 

together.   The enhanced signal is then passed through another 

filterbank (the “H” bank), the energy at the output of which is 

sampled to obtain a short-time Fourier transform 

representation of the signal.  Cepstral feature vectors are 

obtained by taking the DCT of the log of the power spectra. 

This scheme is shown in Figure 3, along with the Sphinx-3 

Mel-frequency cepstra (MFC) front end that we use as a 

baseline.

Baseline MFC Front End 
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Analysis frames 

|
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|||

Mel Triangles 

|||

Log (energy) 

|||
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Figure 3: MFC front end versus companding front end 

The important difference between the two systems is that the 

FFT and Mel triangle stages are replaced by the companding 

and H filter bank stages.  As a consequence, the division of the 

signal into analysis frames is deferred until it is needed. 

We note that the actual implementation of the signal 

processing scheme described in Section 2 and above can be 

implemented in a conventional ASR feature computation 

module by appropriate manipulation of the power spectra. 

However, our system is designed to enable direct 

implementation in analog hardware. Consequently we 

explicitly construct the filterbanks shown in Figures 1 and 3. 

4. PARAMETER SETTINGS 

The final values for the various parameters of the companding 

front end were determined experimentally, using the CU-Move 

data set and experimental setup described in Section 5.  The 

final values are as follows:

1. Analysis frame size: 25 ms wide with a shift of 10 ms. 

2. Number of channels: 64, with center frequencies ranging 

from 130 to 6500 Hz, spaced equally along the Mel 

frequency scale (i.e. approximately log-linearly on the 

linear frequency axis.) 

3. F quality factor parameter qF: 2 

4. Compressor envelope detector time constant : 5 

5. G quality factor parameter qG:  4 

6. Expander envelope detector time constant : 20 

7. Companding factor ‘n’: 0.15, but it was found to be better 

to apply companding only at lower frequencies. 

Consequently the parameter n is rolled off via a sinusoid 

function from the value 0.15 at 2.45 kHz and below, to 

1.00 (no companding) at 3.45 kHz and above. 

8. H filter equal to cascade of F and G with qF: 4 and qG: 8 

9. Number of cepstral coefficients retained: 13 

The parameters of the baseline MFC front end were made 

analogous to the parameters of the companding front end.  

E.g., we used 64 Mel triangles across the frequency range    

130 Hz - 6500 Hz.  We did not however try to make the slopes 

of the triangles similar to the slopes of the H filters. 

5. EXPERIMENTAL EVALUATION 

We evaluated the companding front end on the digits 

component of the CU-Move in-vehicle speech corpus [8]. CU-

Move consists of speech recorded in a car driving around 

various locations of the continental United States, under 

varying traffic and noise conditions. We estimated the SNRs of 

utterances by aligning the utterances to their transcriptions 

with Sphinx-3, identifying silence regions, and deriving SNR 

estimates from the energy in the silence regions. We used only 

utterances for which we could conveniently get clean 

transcripts and SNR measurements: a total of 19,839 

utterances. The data were partitioned approximately equally 

into a training set and a test set. A common practice in robust 

speech recognition research is to report recognition results on 

systems that have been trained on clean speech. While such 

results may be informative, they are unrepresentative of most 

common applications where the recognizer is actually trained 

on the kind of data that one expects to encounter during 

recognition. In all of our experiments, therefore, we have 

trained our recognizer on the entire training set, although the 

test data were segregated by SNR. The baseline performances 

obtained with Mel frequency cepstra by our system were 

therefore found to be comparable to or better than that 

obtained on the same test set with several commercial 

recognizers.

The Sphinx-3 speech recognition system was used in all 

experiments. In all experiments continuous density HMMs 

with 500 tied states, each modeled by a mixture of 8 

Gaussians, were used.  A simple “flat” unigram language 

model was used in all experiments. 

The results of our evaluations are shown in Figures 4 and 

5. For the plots, the test utterances were grouped by SNR into 

5 subsets, with SNRs in the ranges  <-2.5db, -2.5db to 2.5db, 

2.5db to 7.5db, 7.5db to 12.5db, and >12.5dB respectively. 

The X axis of the figures shows the centre of the SNR range of 

each bin. 
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Figure 4:  % word accuracy (recall) by test subset SNR
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Figure 5: % (1 - word error) by test subset SNR 

Experiments were conducted with three different feature 

types: conventional Mel Frequency Cepstra (MFC), to 

establish a baseline, features computed using the companding 

front-end described in Sections 2 and 3 (companding), and

finally, a non-companding filterbank based feature, which is 

implemented by eliminating the companding component of the

companding front-end in Figure 3 (filtering only).

We report two different measures of performance. Figure 

4 shows the recognition recall. This shows the percentage of 

all words uttered by the speakers that were correctly

recognized by the recognizer. Recognizers also often insert 

spurious words that were not spoken. Figure 5 shows the

accuracy obtained after adjusting for such insertions.

6. OBSERVATIONS AND DISCUSSION 

We observe that the recall obtained with the companding front

end is consistently better than that obtained with MFCs. The

insertion adjusted accuracy of the companding front end

remains below that of MFCs; however at very low SNRs, even 

this number is significantly better than the baseline.

The companding front-end enhances peaks and the

spectral structure of speech sounds, resulting in improved

recall performance for the recognizer. However, masking also 

has the effect of enhancing spurious spectral peaks from the 

background noise, causing word insertions from these spurious

peaks. Our results indicate that while at relatively high SNRs 

the insertions cancel out the gains from the improved recall, at

low SNRs the improvement in recall is significantly greater

than the increase in the insertion rate, resulting in improved

overall recognition as compared to Mel frequency cepstra. 

Other experiments not reported here show that these

improvements carry over to SNRs as low as -20 dB. The 

proposed front end is hence useful both in situations where 

recall is important, and where very low SNRs may be 

expected. Additionally, it may be expected that adaptive 

companding, that adjusts the companding level by the SNR of

the signal, may result in even better recognition performance.

A second noteworthy point is that both the recall and 

accuracy obtained with the companding front end is superior to

that obtained with the “filtering only” feature. It is important to

bring out the relevance of this comparison: Mel cepstral 

analysis essentially simulates a filter bank. The “filtering-

only” feature represents features obtained from an explicitly

implemented filterbank. It can hence be expected that with 

appropriate settings of the filters, the performance obtained 

with the filtering only front end can be brought to the level of 

MFCs, and that the performance of the Companding front end 

can then improve correspondingly.

Finally, we note that the design of the front-end is such 

that it can be implemented in very low power analog VLSI.

Such a front end will enable continuous, robust, low power 

listening in devices from cellphones to security systems.
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