
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Similarity-based Analysis for Large
Networks of Ultra-Low Resolution

Sensors

Christopher R. Wren and David C. Minnen and Srinivas G. Rao

TR2005-003 July 2006

Abstract

By analyzing the similarities between bit streams coming from a network of motion
detectors, we can recover the network geometry and discover structure in the human
behavior being observed. This means that a low-cost network of sensors can provide
powerful contextual information to building systems: improving the efficiency of eleva-
tors, lighting, heating, and cooling; enhancing safety and security; and opening up new
opportunities for human-centered information systems. This paper will show how signal
similarity can be used to calibrate a sensor network to accuracies below the resolution
of the individual sensors. This is done by analyzing the similarity structures in the un-
constrained movement of people in the observed space. We will also present our efficient
behavior-learning algorithm that yields 90% correct behavior-detection in data from a
sensor network comprised of motion detectors by employing similarity-based clustering
to automatically decompose complex activities into detectable sub-classes.

Pattern Recognition 39(10), Special Issue on Similarity-Based Pattern Recognition

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2006
201 Broadway, Cambridge, Massachusetts 02139

December 15, 2004: Submitted to KIMAS 2005

January 16, 2005: To be submitted to Pattern Recognition, Special Issue on Similarity-Based
Pattern Recognition

April 2005: to appear in the IEEE International Conference on Integration of Knowledge Inten-
sive Multi-Agent Systems, KIMAS 2005

October 2005: significantly revised in response to reviewer comments.

January 2006: revised version accepted to Pattern Recognition Special Issue on Similarity-Based
Pattern Recognition to be published by Elsevier, edited by Bicego, Murino, Pelillo and Torsello.

July 2006: Online version available at http://dx.doi.org/10.1016/j.patcog.2006.04.009
Print version will appear in the October 2006 issue of Pattern Recognition: volume 39 issue 10.

1 Introduction

The occupants of a building generate patterns as they move from place to place,
stand at a corner talking, or loiter by the coffee machine. These patterns leave
their mark on every object in a building. Even a lowly carpet will eventually
be able to tell you something about these patterns by how it wears. However,
our automated systems are largely blind to these patterns. Elevator, heating
and cooling, lighting, information, safety, and security systems all depend on
humans to translate these patterns into action.

A network of sensors can sense these patterns and provide useful information
to context sensitive systems in a building. However, these systems need to be
cost-effective. We could attempt to extract detailed models of the activities
occurring in the building and then reason about them to accomplish our goals.
However, we cannot assume that we will have access to the high-fidelity sensors,
or the large computing resources, that approach would require. Instead we strive
for direct solutions: solutions that operate directly on the signals, employing
similarity-based analysis.

This choice also allows us to develop algorithms that are applicable to a wide
variety of sensors—not only cameras, but also what we call ultra-low resolution
sensors (ULRS): passive-infrared motion detectors, ultrasonic sensors, and other
one-bit-per-second devices. In Section 5, we present the results of experiments
that validate this approach for building-scale behavior understanding. The ex-
periments show that ubiquitous, simple sensors, combined with similarity-based
analytic techniques, compare favorably to the more commonly employed sensor
models.

This paper addresses two important problems. First, given no prior infor-
mation and only the unconstrained motion of building inhabitants, how can a
network calibrate itself? Second, given limited, indirect supervising data (pos-
sibly garnered from systems such as elevator scheduling computers or key-card
systems), how can the network efficiently learn to recognize important behav-
iors?

Geometric calibration is important because so much of the context within
a building is linked to location. Finding ways to make geometric calibration
automatic serves two purposes. First, it reduces the installation cost of the
network: there is no need to carefully document every sensor or carefully sur-
vey the equipment after installation. The network can be deployed in an ad
hoc manner. Second, automatic calibration also helps make the network more
robust by allowing it to adapt to changes in building configuration and to node
displacement or replacement. We formulate an automatic-calibration algorithm
by realizing that, in a network, sensors that are near each other will exhibit sim-
ilarity in their data streams. We present our approach to geometric calibration,
and our results, in Section 4.

The behavior of the occupants is a rich source of context in a building.
Unfortunately, its complex structure is very difficult for a human operator to
manually label. Behavior is unique to each building. It is often a time-varying
process. All these things point to the need for automatic behavior-discovery.

MERL-TR2005-003 July 2006

Unfortunately, the literature on temporal clustering pays little attention to com-
putational complexity. As a result, the classical algorithms that people have
used to discover temporal patterns in unstructured databases do not scale at all
to the data size and behavioral complexity that one expects to find in a large
building. We present a modification to standard temporal pattern discovery
algorithms that makes them significantly more efficient. This allows systems
to tackle the huge quantity of information and deep richness of behavior that
is present in such settings. We present our temporal clustering algorithm, and
results, in Section 5.

We show that it is possible to extract rich descriptions of spaces observed by
sensor networks, even if the network consists of sensors that are of very limited
ability. By using similarity-based techniques and relying only on the patterns
generated by the unconstrained occupants of the building, we show how to build
low-cost systems that can adapt to a wide variety of settings.

2 Related Work

Wilson and Atkeson [21] also utilize a network of motion detectors in their
work. Their system is targeted to the home, where they assume that only a few
people will be present. This allows them to pursue a classic track-then-interpret
methodology. More people means more ambiguity, and more ambiguity means
exponentially more hypotheses that must be considered during tracking. This
is only practical in low-census buildings, such as the home. Wilson and Atkeson
also assume strategic placement of sensors. That level of specialization is not
economical in large buildings or where usage patterns change regularly. We
assume that our network will be built into the lights, outlets, and vents, and
that it will therefore be installed by professional electricians and ventilation
engineers, rather than behavioral or eldercare specialists. We propose our self-
calibration method to address this issue.

There is a significant body of literature surrounding the interpretation of
human behavior in video [16, 9, 11, 6, 13]. A common thread in all of this work
is that tracking is the very first stage of processing. That limits the work to
sensor modalities that can provide highly accurate tracking information in the
absence of any high-level inference. In particular, the ambiguities inherent in
using a motion-detector network can be expected to introduce enough noise in
the tracking results to render most of these approaches unusable.

There are a few works that have attempted to step outside this frame-
work [20, 8]. These systems learn task-specific state models that allow the
behaviors to be recognized directly from similarity measures on sensor data,
without tracking. Our work follows this philosophy and adapts it to the domain
of sensor networks.

MERL-TR2005-003 July 2006

3 Experimental Design

We have instrumented 175m2 of office space with 17 ceiling mounted sensors.
Each sensor has an active region that is a roughly 12m2 rectangle. The exact
field of view of each sensor depends on the height of the ceiling and the presence
of occluding objects. The sensors report motion events in their active area at
7.5Hz. They also respond to sudden changes in illumination. They adapt to
novel, perfectly stationary objects and other changes in the environment after
about 20 seconds.

3.1 The Experimental Domain

westhall4
wes

th
all

3

wes
th

all
2

westhall1

northhall1

northhall2

northhall3
backhall

lobby2

lobby4

lobby1 lobby3

foyer4

foyer5

fo
ye

r3fo
ye

r2

foyer1

2
3

4

5 6

78

1 9

Figure 1: Top: The floor plan of the observed space. Named dots represent sen-
sors. Circled numbers represent entrance and exit points. Bottom: A composite
image from the sensor network.

The area covered consists of the high-traffic core of our building: the elevator
lobby, reception lobby, restroom entrances, and hallways. See the area map in

MERL-TR2005-003 July 2006

Figure 1. Traffic through this area is high since it divides the office into east and
west partitions. The east partition (through #1 and #2) contains a few offices
and many common services: the kitchen, coffee machine, mail room, supply
room, lunch room, and two meeting rooms. The west partition contains the
vast majority of the offices and lab spaces. The elevators (at #3) are the only
elevators that service this floor and are the principle entrance and exit for the
majority of the occupants.

There are a number of places where people can enter and exit the observed
space. Specifically: #1 leads to the kitchen, lunch room, and meeting rooms;
#2 and #4 lead to offices and lab space; #3 is the bank of elevators, #5 leads to
the restrooms; #6 leads to the library, the stairway to lower floor offices, and the
administrative wing; #7 is a rarely used stairway; #8 is an alarmed emergency
exit; and #9 also leads to the administrative wing. There is an unobserved path
that connects #1 and #2, and another that connects #4, #6, and #9.

The area was chosen to test several potential uses of ULRS, including ac-
tivity recognition and prediction, anomalous event detection, and population
estimation and forecasting. Calling an elevator is one activity that happens in
this area that is both economically interesting and well defined. Section ref-
sec:models will, in particular, focus on the specific task of detecting and pre-
dicting presses of the elevator call button. We anticipate that the methods
described below will also be applicable to the other tasks mentioned above.

3.2 Sensors

We define the ULRS as a generalized sensor that generates a stream of boolean
values over time in response to human activity. For a given network of sen-
sors, an arbitrary order will be imposed upon the sensor nodes so that they
may be unambiguously indexed. The underlying representation of the data will
therefore be an event list:

Ei,t = {0, 1} (1)

A particular entry in the event list will be true if and only if there were a motion
event detected by the ith sensor, during the tth temporal bin, where i is the
unique index of a particular sensor in the network. Remember that these events
are boolean and indicate merely the presence of some kind of motion anywhere
in the field of view, but no indication of the number of people, the direction of
motion, or any other such secondary information.

This sensor model admits a wide variety of sensor implementations including
passive infrared motion detectors, break-beam sensors, pressure pads, and even
cameras and microphones.

4 Recovering Geometry

In this section we show that we can recover the geometry of the sensor net-
work simply by observing similarities across time in the patterns created by
unconstrained motion of the occupants of a building [23].

MERL-TR2005-003 July 2006

We define similarity as the co-occurrence statistic between two streams of
events: Ci,j,δ. The co-occurrence is the count of events that co-occur at a given
temporal offset:

Ci,j,δ =
∞∑

t=0

Ei,tEj,t+δ

where δ ≥ 0, and Ei,t is a boolean value. Taken together, the Cijδ for all
possible δ are equivalent to the cross-correlation of the event lists for all sensors
i and j. However, the entire cross-correlation is not useful and is very memory-
intensive to compute, so we will only ever consider relatively small values of δ.
In particular, we will focus on values of δ that correspond to the time-scales
relevant to human behavior: seconds to minutes.

4.1 Relationship to Geometry

It is perhaps informative to think of these co-occurrence values in the context
of audio localization [17]. In audio localization the time difference of arrival
(TDOA) is estimated by finding the peak of the cross-correlation between two
audio signals. This single number characterizes the spatial relationship between
the audio source and the multiple receivers. Broadly, this paper attempts to
take a similar approach. If we assume that the dominant activity in the space
is movement through the space, then we can estimate the TDOA between vari-
ous sensors in the system and that will provide information about the relative
structure of the sensor network.

We will see in Section 4.3 that this assumption is at least valid in the office
environment where we tested it. In particular, we accept that many of the co-
occurrences in the counts above will be false co-occurrences, mere coincidence,
and not an expression of a structured process (such as people moving about)
that would affect the overall shape of the co-occurrence trace.

4.1.1 Position

If we have single-pixel sensors, for example a motion detector, then the TDOA
provides only information about the distance between the sensors. Figure 2
illustrates this point. These plots are real co-occurrence plots from a hand-
selected subset of the experimental sensors. The plots show the co-occurrence
between the lobby1 (L1) sensor and other sensors (lobby4, lobby2, foyer5,
northhall1,
northhall2, and northhall3, as labeled on the left of the figure). For il-
lustrative purposes, These plots have been manually sorted so that the sensor
closest to lobby1 is at the top, and the furthest sensor is at the bottom. The
top plot shows auto-correlation of lobby1 with itself. This plot is proportional
to the likelihood of seeing an event from lobby1 at time t = T + δ, conditioned
on the fact that we saw an event from lobby1 at t = T :

PL1|L1(δ) = P (L1T+δ|L1T = 1)

MERL-TR2005-003 July 2006

10 20 30 40 50 60

l1

P(O|L1) as a function of time

10 20 30 40 50 60

l4

10 20 30 40 50 60

l2

10 20 30 40 50 60

f5

10 20 30 40 50 60

nh
1

10 20 30 40 50 60

nh
2

10 20 30 40 50 60

time

nh
3

Figure 2: Plots of co-occurrence rate between the first camera and the cam-
eras situated along a contiguous, hand-selected path through the space. Bars
represent peak values.

This plot shows that, after seeing an event at the lobby1 sensor, the probability
of seeing a second event there appears to decay exponentially over time. The
second plot shows that there is a more interesting relationship between lobby1
and lobby4:

PL4|L1(δ) = P (L4T+δ|L1T = 1)

this is the probability of seeing an event in lobby4 some time after seeing an
even at lobby1. The peak of this plot is around eight seconds and is marked by a
black bar in the plot. The sensors lobby1 and lobby4 are very near each other.
As we move down the figure, we see the conditional likelihood of other nodes:
PL2|L1(δ), PF5|L1(δ), PNH1|L1(δ), PNH22|L1(δ), and PNH3|L1(δ). These nodes
are progressively further from lobby1, and we see the peak of the conditional
likelihood moving to the right, representing longer and longer average transit
times.

The peaks of these plots represent the maximum likelihood estimate of the
TDOA between the sensors. We see that the auto-correlation, PL1|L1(δ), peaks
at the origin representing a preponderance of simultaneous co-occurrence. At
the bottom the estimated TDOA is around 36 seconds: the time it takes a person
to walk from the lobby1 sensor across the space to the northhall3 sensor at
an average walking speed.

MERL-TR2005-003 July 2006

4.1.2 Orientation

Figure 3 illustrates a compound sensor with a known internal geometry between
the five receptive fields. Given this kind of sensor, we should be able to estimate
the relative orientations, as well as positions. We do this by exploiting the
differential in TDOA observed in different receptive fields, relative to other,
external sensors.

Figure 3: The layout of the foveal receptive field of the compound sensor and
an example of a simulated sensor firing in response to a visual stimulus in the
video.

If the sensor network is in fact comprised of cameras, as would be the case
in a surveillance system for example, then the implementor is free to choose any
receptive field geometry. Another possibility would be to trade off hardware
cost for computational cost by affixing cheap motion detectors to the camera
in a known geometry. These sensors could then directly provide the required
event streams.

4.2 Mid-level Vision

The low-level processing of events produces a family of cross-correlation curves:
N2 traces for N sensors. By extracting the peak of each curve, we make an
estimate of the N2 TDOA constraints. There is significant structure in these
constraints. They represent the underlying physical reality that ties the N
sensors into a single network. An example of these estimates is illustrated in
Figure 4.

We exploit these constraints by modeling them in a multi-dimensional scaling
(MDS) framework. We refer the reader to the introduction to MDS by Kruskal
and Wish [10]. We chose an iterative, gradient-descent approach to MDS where
the similarities influence the springs between a set of masses, representing the
nodes [7]. The TDOA constraints represent the preferred length of N2 springs
between the N masses. The system is represented by the equation:

xt+1 = Axt + b(xt)

where x is the state of the system (the current estimate of the sensor positions

MERL-TR2005-003 July 2006

Figure 4: The matrix of TDOA estimates for the 17 sensor condition. White
represents a low-TDOA, and black represents a high-TDOA.

and the velocity of the hypothetical masses), A is the system update matrix,
and b is the control signal generated by the hypothetical springs based on the
current state [2]. This system relaxes to a minimum energy solution that is the
optimal estimate of the relative geometry given the constraints. This estimate
is accurate up to a global scale, translation, and rotation.

To recover orientation, the N sensors are split into M receptive fields, and
the MDS system models the M2 constraints subject to the requirement that the
internal geometry of the compound sensors remains fixed. The dimensionality
of x and A do not increase, because the underlying degrees of freedom did not
increase. Only the complexity of b(·) increases, with the addition of all the new
constraints.

One problem with this framework is that early mistakes in TDOA estima-
tion can have a large impact on the final solution. We find that the TDOA
estimates that are the noisiest are the ones that are supported by the least ob-
servations: paths rarely taken. We can extract not only the TDOA estimate
but a confidence value that is a function of the total number of observations
that contributed to that estimate. This confidence is expressed in the model as
the spring constant: a gain on the influence exerted by a particular constraint.
Without this confidence value, all the spring constants in the MDS simulation
are set equal to the same value. The results in the next section show the utility
of weighting the estimation process with these confidence values.

4.3 Results

The simple, unweighted TDOA method works well for position. Since the MDS
algorithm only recovers the relative geometry of the sensor network, we need
to recover the affine transform that best maps the estimated network geometry

MERL-TR2005-003 July 2006

Position Orientation
Unweighted 2.4m 1.5 rad
Weighted 1.8m 1.3 rad

onto the ground truth geometry. We accomplish this with a standard minimum
mean squared error estimator [5]. This is the configuration illustrated in the
right-middle pane of Figure 6. The small symbols represent the true sensor
positions, and the large symbols represent the estimated sensor positions after
the affine transform. The true and estimated positions are connected in the plot
by error bars.

Once we have recovered the affine transform, we can measure the accuracy
directly simply by computing the root mean squared (RMS) distance error. For
the unweighted TDOA method, we see a RMS error of 2.5 meters. Because our
sensors observe 3.7m × 4.9m rectangles, this figure is “sub-pixel” in the sense
that it is significantly below the raw sensor resolution. When we leave out half
of the sensors to create a subset with no overlap, we find that the error only
goes up slightly—to 2.7m.

The middle row of Figure 6 shows the position error results. True position
and estimated position are connected by error bars. It is possible to see that
a large part of this error is due to the global warping of the whole network.
This warping has particularly devastating effects at the edges of the network,
where it pulls the ends of hallways and the far corners of the lobbies toward the
center. By using the weights to discount poorly supported TDOA estimates, we
can recover much more accurate estimates, as seem in the left-middle pane of
Figure 6. This post-affine transform configuration represents an RMS error of
only 1.8m. This lends credence to the idea that these errors are largely caused
by noisy estimates of inter-sensor distances for which transitions are rarely seen,
such as between sensors on opposite ends of the network.

It is difficult to evaluate the accuracy of orientation estimation when it is
jointly performed with position estimation, since what appear to be erroneous
orientation estimates may actually be consistent in the context of mistakes in
position estimation. We therefore present results from orientation estimation
in isolation: where the position of the sensors is assumed known. These results
are presented visually in the bottom row of Figure 6. The true and estimated
orientations are connected by error arcs. The bold lines indicate the estimated
orientation of the sensor, and the thin lines represent truth. As shown in Ta-
ble 4.3, the unweighted method achieves an RMS error of 1.5 radians. Since the
receptive fields divide the sensor into quadrants, this number represents accu-
racy very close to the π

2 limit of the raw sensors ability to measure differences
in orientation. By introducing the TDOA estimate weights, we improve this
number to 1.3 radians, well below the discriminative power of the raw sensors.

It is interesting to note that, in the weighted case, much of the orientation
error comes from a small number of outliers. These outliers are sensors that view
doors with dampers, elevators doors, and one extremely high traffic junction.

MERL-TR2005-003 July 2006

1 2 3 4 5 6

Northhall1 Data

1 2 3 4 5 6

1 2 3 4 5 6co
rr

el
at

io
n

1 2 3 4 5 6

1 2 3 4 5 6

time

Figure 5: Plots of co-occurrence rate between the active fields of northhall3
and its neighbor northhall2. See the text for a description.

Figure 5 illustrates the pathology of the sensors that is common to the sensors
that view damped doors and elevators. The plots show the correlation between
the five active fields of northhall3 and its neighbor northhall2. The true
geometry places the upper-left and upper-right fields closest to northhall2, but
the presence of the damped door means that there are persistent, systematic
processes that break the underlying assumption of uncorrelated noise. Every
time a person passes through this hall, the door is opened and it then creates
a stream of events as it slowly closes. This event is, by necessity, as common
as someone passing through the door. This causes the wide plateau in the
bottom two plots of Figure 5 that confound TDOA estimation despite ample
observations. To overcome these errors one would need a significantly more
detailed model of the underlying processes.

In order to overcome these errors we would need to take advantage of in-
formation contained in the auto-correlation signal, PNH3,NH3(δ). Sensors that
observe damped doors should have significantly different decay profiles, com-
pared to other sensors. It might be possible to use deconvolution to restore the
peaks in the smeared cross-correlation functions [3].

MERL-TR2005-003 July 2006

Figure 6: Top: The ground truth distance and orientation map (left) and the
hand calibrated views from the sensors (right). Middle: The estimated (bold)
positions of the sensors are connected by error bars to true locations (light),
for weighted (left) and unweighted methods (right). Bottom: The estimated
(bold) orientations of the sensors are connected by error arcs to true orientation
(light) for weighted (left) and unweighted methods (right).

MERL-TR2005-003 July 2006

5 Modeling Behavior

Given a training set consisting of a collection of hypothetical observation se-
quences, Ei,t, and a list of activity labels from the same time period, At, our
task is to estimate the probability that a new set of observations corresponds
to a particular activity:

p(At|Ot0 , Ot1 , Ot2 , Ot3 , . . .)

When · · · t2 < t1 < t0 = t, then the modeling system has the advantage of seeing
the entire activity ending at the activity label At before making a decision.

The task of parametric, supervised learning in the domain of building-scale
behavior recognition is made more difficult by the fact that there are several
disjoint processes that result in the same semantic activity label. For exam-
ple, an individual may approach the elevator button from the left or from the
right. In both cases we wish to recognize the impending button press but the
two behaviors leading up to the activity will appear very different to any per-
ceptual mechanism. Manually labeling the different processes is fraught with
human bias, and would, in any case, be impossible for an automated system
that may only have one label available to it (the actual press of the button, in
this case). One way to solve this problem is to take a semi-supervised learning
approach where the learning algorithm is given the abstract labels but has the
responsibility to derive structure directly from the data in a way that is usually
associated with unsupervised approaches.

This section discusses a semi-supervised learning technique that recovers
trees of Hidden Markov Models (HMMs). The trees are formed by factoring
the similarity matrix generated by comparing the training sequences. In this
way, the algorithm discovers the sub-behaviors that correspond to the labeled
activity. This method is efficient enough to be used on tasks where behavioral
complexity is high and training corpi are large. These are the two aspects that
characterize the demanding building-wide context domain: rich with complex
behaviors, but also rich in data to characterize them.

In the discussion below the assumption is made that the historical obser-
vations contain many correctly-labeled positive and negative examples of the
activity to be recognized.

5.1 Semi-Supervised Learning

Given a set of observation sequences with the same label, we must find the
structure within that class so that we may build efficient models. However,
there is no satisfying way to directly compute the similarity of two sequences
which may have different lengths. Smyth [15] suggests using HMMs to induce
a similarity measure between sequences.

We create a similarity metric for sequences by training one HMM for each
observation sequence to be compared. Since there are many more parameters in
an HMM than can be trained with a single observation sequence, this amounts
to simply initializing the HMMs so that their means and transitions optimally

MERL-TR2005-003 July 2006

describe the training sequence. The resulting models are very poor. However,
they are good enough to provide a way to compare the similarity of sequences.
The similarity between two observations, Oi and Oj ,is then computed using the
HMMs:

§(Oi, Oj) =
1
2
[p(Oj | λi) + p(Oi | λj)] (2)

where p(Oj | λi) is the probability of generating the jth observation from the ith

model. Intuitively, if the two observations are similar, then they should give rise
to similar models which would then generate the opposite observation with high
likelihood. A similar method was used by Wang et. al. [19] but they proposed
a more complicated distance metric:

D(Oi, Oj) =
1
2
[1

Ti
(P (Oi | λi)− P (Oi | λj)) +

1
Tj

(P (Oj | λj)− P (Oj | λi))] (3)

Empirical tests, however, showed that this distance metric did not perform as
well as Smyth’s simpler similarity metric.

Given this definition of a similarity metric, we form the similarity matrix S
and use it to derive agglomerative clustering of temporal sequences, proceeding
as follows:

1. Train an HMM for each of the N observations

2. Assign each observation to its own cluster

3. Compute the triangular matrix of similarities between all pairs of clusters

4. Find the two closest clusters, A,B : A 6= B

5. Merge these two clusters

(a) Update the similarity matrix: D(i, A) = max(D(i, A), D(i, B)), for
all clusters i

(b) Remove the Bth row and column from the similarity matrix

(c) Record that these two clusters were merged at this step to form the
hierarchy

6. If more than one cluster remains, go to step 4

This procedure will create a full range of decompositions starting at N nodes
for N sequences, and ending at a single node model. To determine how many
clusters should be used, a separate analysis can be applied to this data structure
to find a “natural break” in the clustering (i.e., a merge between significantly
more distant clusters than the previous merge). Alternately, a predefined num-
ber of clusters can be selected. In the experiments described below, the number
of desired clusters was chosen empirically by comparing generalization perfor-
mance between composite HMMs with different numbers of paths. Note also

MERL-TR2005-003 July 2006

Figure 7: A composite HMM consisting of three path HMMs. The start and
end state are non-emitting.

that, as defined above, the similarity between two models will increase as they
become more similar.

Once the temporal clustering is finished, the M selected clusters are used
as the dataset to train new HMMs. Each of these HMMs represents a dif-
ferent underlying process as identified by the clustering algorithm. However,
these HMMs are trained after “hard” assignment, where the member function
µ(Oi, λj) is defined thusly:

µ(Oi, λj) =
{

1 ifj = arg maxk P (Oi | λk)
0 otherwise

This means that each training observation is a member of one and only one
cluster. It has been shown that in many cases “soft” assignment leads to better
models due to similarity and ambiguity between classes [1]. Soft assignment
allows an observation to be a partial member to many classes:

µ(Oi, λj) =
P (Oi | λj)∑
k P (Oi | λk)

To accomplish such probabilistic training, a composite HMM is constructed and
then retrained on all of the data.

5.2 Composite HMMs

For the composite HMM illustrated in Figure 7, the transition matrix, Tpq,
would be block diagonal, with each of the three paths contributing a block of
non-zero transition probabilities between intra-path states while the inter-path
transition probabilities would all be zero. This is the composite HMM structure
proposed by Smyth [15].

Constructing the composite HMM is straightforward. Each cluster HMM be-
comes a distinct path through the composite HMM. This means that if each of
the M cluster HMMs has s states, then the composite HMM will have S = M×s
states, leading to an S × S transition matrix. The transition matrices of each
path HMM are copied directly into the transition matrix of the composite HMM
along the main diagonal. The prior state probabilities and final transition prob-
abilities (i.e., the probability of exiting each path HMM) are then copied into

MERL-TR2005-003 July 2006

Figure 8: A tree of HMMs with three levels. Each node is composed of two
HMMs that determine what subset of the incoming data is used for each child
node.

the composite HMM and normalized. Finally, the observation distributions
from the path HMMs are also copied into the corresponding states of the com-
posite model. Once the composite model has been constructed, the standard
Baum-Welch algorithm can be used to train the paths with soft observation
assignments.

Although this algorithm is straightforward, it can be inefficient to retrain
the composite model. The standard Baum-Welch algorithm has computational
complexity on the order of:

O(N · S2) (4)

per iteration, where the model has S states and is trained on N observations.
Since the M path HMMs have s states each, training the paths independently
should have complexity:

O(M ·N · s2) (5)

For the full composite model, even though most of the state transitions are
known to be zero, they still figure into the calculation, and the composite HMM
therefore has the equivalent of the full S = Ms number of states. Substituting
Ms back into 4 and taking the ratio of that composite Baum-Welch complexity
over the composite, single-path complexity:

complexity(compositemodel)
M · complexity(pathmodel)

=
N · S2

M ·N · s2
=

N · (M · s)2

N ·M · s2
= M (6)

We see that training a composite model composed of M paths will take at least
M times longer than training the path HMMs individually. Furthermore, the
composite model will almost certainly require many more iterations to converge
due to the extra parameters to estimate, which will further increase the training
time. Alon et. al. have developed a more efficient algorithm for training with
soft assignments [1] that is similar to the Baum-Welch algorithm except that
the probability of membership of each observation to each path is taken to be
a hidden variable along with the typical hidden state memberships.

5.3 The Tree of Composite HMMs

Two factors motivate the use of trees of HMMs to automatically learn temporal
clusters [12]. First, compared to the composite model described above, a tree of
HMMs will require less time to train. Second, the tree can potentially decompose

MERL-TR2005-003 July 2006

the data more sensibly since each level need only split the dataset into two parts
rather than M separate clusters. For datasets that exhibit natural divisions
that match this model, we would expect to see an improvement in modeling
performance as well as a gain in efficiency.

A tree of HMMs is defined here as a binary tree where each node contains
two HMMs (see Figure 8). The purpose of the two HMMs is to model different
temporal clusters or groups of clusters in the dataset, thus dividing the data
into two distinct parts. Each of these parts is then sent to the child node
corresponding to the HMM that better models it. This continued bifurcation of
the dataset becomes fully decomposed at the leaves of the tree. It is important
to note that the tree of HMMs is not a binary decision tree. Instead, it is a
hierarchical model of all of the data. Thus, the leaf nodes do not represent
decisions, rather they form the final step in the decomposition of the data into
distinct clusters.

Each node in the tree will use time proportional to O(ns2) where each HMM
has s states and is trained on n examples. Furthermore, the number of iterations
needed for training to converge in each node is far lower than for the composite
model, which also contributes to faster training.

5.4 Implementing Trees of Hidden Markov Models

There are a number of decisions that must be made when implementing the tree
of HMMs describe above. During the training phase, there is the question of how
to initialize the component HMMs. During evaluation there are several possible
ways to calculate the probability of an observation. In accordance with empirical
findings that we have omitted here, we use left-to-right initialization, evaluation
with the Forward algorithm, and overall observation probability determined by
the maximum leaf vote [14].

5.5 Hidden Markov Models for Event Lists

Remember from Equation 1 that the observations are boolean vectors with
dimensionality equal to the number of cells in the system. Given that multiple
cells may simultaneously observe an individual, and that we certainly cannot
assume that the space will only be occupied by one person at a time, we cannot
a priori assume that the cells will be active with any particular structure. That
means that a distribution over these observations would have to account for 2N

possibilities for a system with N cells. This is intractable.
Since there is an underlying physical process behind the observations, we

can assume, however, that there will be some inherent structure to the observa-
tions. To both reduce the dimensionality of this space and capture some of this
structure, we will cluster the observations into a set of M alternatives where
M � 2N . Because we are clustering bit-strings, we use Hamming distance
to define the clusters. These M alternative interpretations of the observation
vectors are taken as the mutually-exclusive, independent alternatives produced

MERL-TR2005-003 July 2006

by a multinomial process. Figure 9 illustrates the 300 clusters found for a 5x5
network of cells overlaid on the foyer3 camera.

Figure 9: Examples of clusters from a 5x5 cell array on this camera.

In our implementation, both the Smyth and our Tree approach use this
multinomial process model to formulate the observation probabilities in the
component HMMs.

5.6 Performance Gains

In this section, the training and testing data were drawn from a pool of over
2.7 million observed sequences. Of those, 1956 were positive examples, meaning
observations sequences that ended in an elevator press. The rest were taken
as negative examples. The data was collected over four weeks. There were no
constraints placed on the occupants of the space during that time. Much of the
data contains multiple actors in the space at the same time. The algorithms
randomly sample from these positive and negative pools to form training sets.
The remainder are taken as a test set. The negative test set is also sampled to
insure that the cardinality of the negative test set matches the cardinality of
the positive test set. Multi-actor data is therefore likely to be part of both test
and training data sets.

Both the classification performance and the computational complexity of
our Tree method depend on the schedule of model complexity. Simple models
at the root drastically reduce computational complexity but may cause over
generalization early on that are detrimental to classification performance. The
results presented here assume a fixed state schedule: 2, 4, 6, 8, 8, This
means that the top-level models would have 2 states, the second-level models
would have 4 states, and so on up to a maximum of 8 states per model.

Figure 10 shows the results of 20 runs of the Smyth and Tree algorithms

MERL-TR2005-003 July 2006

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Smyth (blue) vs. Tree (red) over 20 runs

Figure 10: Randomized runs of the Tree and Smyth algorithms on the elevator
task. The receiver operating characteristic curves indicate equivalent classifica-
tion performance within the variance due to randomized initialization.

starting from different random initial conditions (including different random
samples of the test and training sets). It shows that the two algorithms have
essentially identical performance and stability for this task. The Alon method
generates exactly identical results to the Smyth method.

The left side of Figure 11 explores the effect of dataset size on computational
performance. We can see that Smyth is super-polynomial in data size: the plot is
concave up on a log-log plot, so it’s growing faster than any polynomial. We see
that the Alon method is a significant improvement over Smyth. Our method is
roughly twice as fast as Alon on this dataset. The right side of Figure 11 verifies
that there is an advantage to using more data, and that we are not paying a
significant classification performance hit for our approximations.

The left side of Figure 12 again shows that the Smyth algorithm is super-
polynomial in computational complexity, here in relation to the model complex-
ity. However, we see that the Alon method does not fix this problem: Smyth
and Alon are both super-polynomial. The Tree method is much faster than
both of the other methods. The right side of Figure 12 shows that there is an
advantage to complex models. In fact, for larger spaces we would expect to see
many more types of behavior, so this advantage is crucial for real systems.

5.7 An Examination of Context

We tested the above learning methods on the elevator-call task with a variety
of sensor configurations and extent of context. The four cases all have roughly
the same number of cells but use that perceptual bandwidth in different ways.

MERL-TR2005-003 July 2006

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8
x 104

data points

se
co

nd
s

training time vs. dataset size

Smyth
Alon
Tree

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.05

0.1

0.15

0.2

0.25
classification performance vs. dataset size

eq
ua

l e
rr

or
 ra

te

data points

Smyth
Alon
Tree

Figure 11: Left: The effect of training-set size on computation time (seconds)
for learning. Plot lines are, top to bottom, Smyth, Alon, Tree. Right: The
effect of training set size on classification performance. Smyth and Alon plots
overlap.

f3 : 25 cells from the camera immediately in front of the elevator.

f3f5f2 : 9 cells from each of three cameras in the vicinity of the elevator.

f1f2f3f4f5n1 : 4 cells from each of the 6 cameras observing the elevator lobby.

all : all 17 cameras in the system, with only one cell each.

The left side of Figure 14 shows the performance of the HMM Trees under
these conditions. Two trees were trained for each condition: one for positive
examples, and one for negative examples. The two trees were used in a likelihood
ratio test framework to classify novel observation sequences. All the positive
examples in the training set were used to build the positive tree. However, the
overwhelming number of negative examples in the training set forced us to draw
a relatively small number of samples to use in estimating the negative tree. It
is possible that a bootstrapping mechanism for choosing the negative examples
could result in better performance.

It is interesting to note that the f3 case is the worst performer. This is
counter-intuitive in the classification case because the foyer3 sensor directly
observes the elevator call button, and the 5x5 grid should provide quite a lot
of discriminative power. For a prediction task one would expect that the very
narrow context of foyer3 would be a hindrance, but these results show that
global context is important even for understanding the elevator call activity
when observed in its entirety. In fact, the all case could be considered to give
the best performance, despite the abysmal spatial resolution provided by the
one cell per sensor geometry and the fact that more than half the sensors are
more than 10 meters from the call button.

In an attempt to validate these startling results, we built another classi-
fier based on a completely different clustering approach than is popular in the
literature [8, 4]:

MERL-TR2005-003 July 2006

100 101 102

103

104

se
co

nd
s

paths in composite model

training time vs. model complexity

Smyth
Alon
Tree

101 102
0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13
classification performance vs. model complexity

eq
ua

l e
rr

or
 ra

te

model paths

Smyth
Alon
Tree

Figure 12: Left:The effect of model complexity (paths) on computation time
(seconds) for learning. Plot lines are, top to bottom, Smyth, Alon, Tree. This
is a log-log plot. Right: The effect of model complexity on classification per-
formance. The overlapping Smyth and Alon plots both stop at 30 paths, due
to run-time limitations.

1. Training data is arbitrarily segmented and randomly labeled.

2. HMMs are trained on the randomly partitioned classes.

3. Training data is re-labeled using the new HMMs.

4. Training iterates in this way, to convergence.

Given the cluster models, the training sequence is converted to a sequence of
discrete labels. We call these data-driven clusters loiteremes—they are similar
to phoneme models in speech processing. We build a classifier by taking a
K-nearest neighbor approach where the distance metric is lexicographic order
over the loiteremes sequences that represent a pair of observations. Given the
extreme disparity between the prevalence of positive versus negative events, we
say that the observation represents a positive event if there is even one positive
event within the neighborhood of radius-K.

The results on the right side of Figure 14 were obtained using the KNN-
Loitereme classifier, and they echo the surprising result above: that the worst
performing condition, f3, is the situation that would intuitively seem to pro-
vide the most information about the defining moment of the activity—actually
pressing the elevator button. Again, this would not be so surprising if we were
evaluating prediction performance since the limited temporal horizon of the
observations from this one sensor would be an obvious detriment. With this
model the result that the all condition is the best performer is more clear:
outperforming the other conditions across almost the entire ROC curve.

This is surprising. Two very different modeling approaches lead to the same
conclusion: that the all condition provides some of the best contextual in-
formation for the classification task we tested. and the f3 condition performs
among the worst, despite being the intuitive choice for the detection task.

MERL-TR2005-003 July 2006

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

Figure 13: Four different context scenarios with equivalent total bandwidth:
from left to right, and top to bottom, more context comes at the expense of
larger receptive fields.

This indicates that the notion of global context for human activity under-
standing in buildings may have some real merit. The surprisingly good results in
the unsup-all and tree-all conditions additionally indicate that having global
context may be more important for activity understanding than the quality of
the sensors.

6 Conclusion

Networks of ultra-low resolution sensors are a surprisingly powerful tool for
building awareness. We have shown that similarity-based methods provide so-
lutions for geometry estimation and behavior discovery in networks of simple
sensors, such as motion detectors. This has profound implications for building
automation and security. It is possible to perform useful, holistic perceptual
tasks in buildings with inexpensive sensors, without extensive installation or
maintenance expense, and without the need for invasive sensors.

A Appendix: Sensor Implementation

Even though cameras were used to collect the data, one of the goals of this
work is to explore the utility of ultra-cheap, ultra-low resolution sensors. This

MERL-TR2005-003 July 2006

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

all
f1f2ff3f4f5n1
f3f5f2
f3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

all
f1f2ff3f4f5n1
distal
f3

Figure 14: Left: HMM Tree learning results for different levels of context.
Right: Performance of K-Nearest Neighbor classifier built on top of the HMM
loitereme library for different levels of context.

section describes the intermediate representations we use that allow us to test
our algorithms against an arbitrary set of hypothetical sensor configurations,
including configurations that were not considered before data collection.

When the system detects motion it segments the foreground into connected
components and records the first and second moments of each component [18].
If the moments are interpreted as the parameters of a two-dimensional Gaussian
distribution, then these parameters specify the position, size, eccentricity, and
orientation of a family of ellipses corresponding to the iso-probability contours
of the Gaussian distribution. The upper-left frame of Figure 16 illustrates the
1σ, 2σ, and 4σ contours for the single connected-component recovered for that
frame. Small components, occupying less than 5% of the frame, are dropped.

Figure 15: Some example sensor configurations that are used in this work.

The connected component models can be used to generate simulated sensor-
readings by intersecting the probability contours with hypothetical sensor con-
figurations. Figure 15 illustrates some of the sensor configurations that we have
used in this work. The configuration on the left of Figure 15 is the simplest:
it represents a single motion detector with a field of view that is equivalent to
the video camera’s field of view.The other configurations in Figure 15 are more
complex, but within each sensor region the only information that is reported is
the boolean presence or absence of motion. For example, the 2x2 grid of sen-
sors could be built from a collection of simple motion detectors with restricted
viewing angles. Figure 16 shows the expression of some example geometries to
a real stimulus.

Since these hypothetical sensor readings are computed from the intermediate
motion component representation, and not from the video images themselves,

MERL-TR2005-003 July 2006

Figure 16: Some examples of sensors extracted from a video frame. The ellipses
in the upper-left frame indicate the connected component of the foreground
movement used by the cell extractor.

the process of generating a new set of hypothetical observations proceeds much
faster than real-time. Generating a month of hypothetical observations typically
takes significantly less than an hour for our experimental network.

References

[1] J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters in mo-
tion time-series data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 375–381, 2003.

[2] The Analytical Sciences Corporation. Applied Optimal Estimation, 1996.

[3] A Cichocki and S Amari. Adaptive Blind Signal and Image Processing.
John Wiley & Sons, 2002.

[4] Brian P. Clarkson and Alex Pentland. Unsupervised clustering of ambu-
latory audio and video. In Proceedings of the International Conference of
Acoustics Speech and Signal Processing, pages 3037–40, Phoenix, Arizona,
1999.

[5] A. Criminisi, I. Reid, and A. Zisserman. A plane measuring device. Image
and Vision Computing, 17(8):625–634, 1999.

[6] Ross Cutler and Larry Davis. Real-time periodic motion detection, analysis
and applications. In Conference on Computer and Pattern Recognition,
pages 326–331, Fort Collins, USA, 1999. IEEE.

MERL-TR2005-003 July 2006

[7] Ricahrd O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifica-
tion. Wiley-Interscience, 2nd edition, 2001.

[8] Yuri A. Ivanov and Bruce M. Blumberg. Solving weak transduction with
em. Robotic and Autonomous Systems, 39(3):129–143, 2002.

[9] N. Johnson and D. Hogg. Learning the distribution of object trajectories
for event recognition. Image and Vision Computing, 14(8), 1996.

[10] Joseph B Kruskal and Myron Wish. Multidimensional Scaling. Sage Pub-
lications Inc., 1978.

[11] David Minnen, Irfan Essa, and Thad Starner. Expectation grammars:
Leveraging high-level expectations for activity recognition. In Workshop
on Event Mining, Event Detection, and Recognition in Video, held in Con-
junction with Computer Vision and Pattern Recognition, volume 2, page
626. IEEE, 2003.

[12] David C. Minnen and Christopher R. Wren. Finding temporal patterns by
data decomposition. In Sixth International Conference on Automatic Face
and Gesture Recognition, pages 608–613. IEEE, May 2004. also MERL
Technical Report TR2004-054.

[13] Thomas B. Moeslund and Erik Granum. A survey of computer vision-
based human motion capture. Computer Vision and Image Understanding,
81:231–268, 2001.

[14] Lawrence R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of IEEE, 77(2):257–285,
1989.

[15] Padhraic Smyth. Clustering sequences with hidden markov models. In
Michael C. Mozer, Michael I. Jordan, and Thomas Petsche, editors, Ad-
vances in Neural Information Processing Systems, volume 9, page 648. The
MIT Press, 1997.

[16] Chris Stauffer and Eric Grimson. Learning patterns of activity using real-
time tracking. IEEE Transactions on Pattern Recognition and Machine
Intelligence, 22(8):747–757, 2000.

[17] P. Svaizer, M. Matassoni, and M. Omologo. Acoustic source location in a
three-dimensional space using cross-power spectrum phase. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 231–234, Munich, Germany, April 1997.

[18] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers.
Wallflower: Principles and practice of background maintenance. In ICCV,
pages 255–261. IEEE, 1999.

MERL-TR2005-003 July 2006

[19] Tian-Shu Wang, Heung-Yeung Shum, Ying-Qing Xu, and Nan-Ning Zheng.
Unsupervised analysis of human gestures. In IEEE Pacific Rim Conference
on Multimedia, pages 174–181, 2001.

[20] Andrew Wilson and Aaron Bobick. Realtime online adaptive gesture recog-
nition. In Proceedings of the International Conference on Pattern Recogni-
tion, pages 111–6, Barcelona, Spain, September 2000.

[21] Daniel H. Wilson and Chris Atkeson. Simultaneous tracking & activity
recognition (star) using many anonymous, binary sensors. In The Third
International Conference on Pervasive Computing, pages 62–79, 2005.

[22] Christopher R. Wren and David C. Minnen. Activity mining in sensor
networks. In Workshop on Activity Recognition and Discovery. NIPS, De-
cember 2004. also MERL Technical Report TR2004-135.

[23] Christopher R. Wren and Srinivasa G. Rao. Self-configuring, lightweight
sensor networks for ubiquitous computing. In The Fifth International Con-
ference on Ubiquitous Computing: Adjunct Proceedings, pages 205–6, Oc-
tober 2003. also MERL Technical Report TR2003-24.

MERL-TR2005-003 July 2006

