
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

The Power of Feature Clustering: An Application to Object
Detection

Shai Avidan, Moshe Butman

TR2004-141 December 2004

Abstract
We give a fast rejection scheme that is based on image segments and demonstrate it on the
canonical example of face detection. However, instead of focusing on the detection step we
focus on the rejection step and show that our method is simple and fast to be learned, thus
making it an excellent pre-processing step to accelerate standard machine learning classifiers,
such as neural-networks, Bayes classifiers or SVM. We decompose a collection of face images
into regions of pixels with similar behavior over the image set. The relationships between
the mean and variance of image segments are used to form a cascade of rejectors that van
reject over 99.8% of image patches, thus only a small fraction of the image patches must
be passed to a full-scale classifier. Moreover, the training time for our method is much less
than an hour, on a standard PC. The shape of the features (i.e. image segments) we use in
data-driven, they are very cheap to compute and they form a very low dimensional feature
space in which exhaustive search for the best features is tractable.
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Abstract

We give a fast rejection scheme that is based on image segments and
demonstrate it on the canonical example of face detection. However, in-
stead of focusing on the detection step we focus on the rejection step and
show that our method is simple and fast to be learned, thus making it
an excellent pre-processing step to accelerate standard machine learning
classifiers, such as neural-networks, Bayes classifiers or SVM. We de-
compose a collection of face images into regions of pixels with similar
behavior over the image set. The relationships between the mean and
variance of image segments are used to form a cascade of rejectors that
can reject over 99.8% of image patches, thus only a small fraction of the
image patches must be passed to a full-scale classifier. Moreover, the
training time for our method is much less than an hour, on a standard PC.
The shape of the features (i.e. image segments) we use is data-driven,
they are very cheap to compute and they form a very low dimensional
feature space in which exhaustive search for the best features is tractable.

1 Introduction

This work is motivated by recent advances in object detection algorithms that use a cascade
of rejectors to quickly detect objects in images. Instead of using a full fledged classifier on
every image patch, a sequence of increasingly more complex rejectors is applied. Non-
face image patches will be rejected early on in the cascade, while face image patches will
survive the entire cascade and will be marked as a face.

The work of Viola & Jones [15] demonstrated the advantages of such an approach. Other
researchers suggested similar methods [4, 6, 12]. Common to all these methods is the
realization that simple and fast classifiers are enough to reject large portions of the im-
age, leaving more time to use more sophisticated, and time consuming, classifiers on the
remaining regions of the image.

All these “fast” methods must address three issues. First, is the feature space in which to
work, second is a fast method to calculate the features from the raw image data and third is
the feature selection algorithm to use.

Early attempts assumed the feature space to be the space of pixel values. Elad et al. [4]



suggest the maximum rejection criteria that chooses rejectors that maximize the rejection
rate of each classifier. Keren et al. [6] use anti-face detectors by assuming normal distri-
bution on the background. A different approach was suggested by Romdhani et al. [12],
that constructed the full SVM classifier first and then approximated it with a sequence or
support vector rejectors that were calculated using non-linear optimization. All the above
mentioned method need to “touch” every pixel in an image patch at least once before they
can reject the image patch.

Viola & Jones [15], on the other hand, construct a huge feature space that consists of
combined box regions that can be quickly computed from the raw pixel data using the
“integral image” and use a sequential feature selection algorithm for feature selection. The
rejectors are combined using a variant of AdaBoost [2]. Li et al [7] replaced the sequential
forward searching algorithm with a float search algorithm (which can backtrack as well).
An important advantage of the huge feature space advocated by Viola & Jones is that now
image patches can be rejected with an extremely small number of operations and there is
no need to “touch” every pixel in the image patch at least once.

Many of these methods focus on developing fast classifiers that are often constructed in a
greedy manner. This precludes classifiers that might demonstrate excellent classification
results but are slower to compute, such as the methods suggested by Schneiderman et al.
[8], Rowley et al. [13], Sung and Poggio [10] or Heisele et al [5].

Our method offers a way to accelerate “slow” classification methods by using a pre-
processing rejection step. Our rejection scheme is fast to be trained and very effective
in rejecting the vast majority of false patterns. On the canonical face detection example, it
took our method much less than an hour to train and it was able to reject over 99.8% of the
image patches, meaning that we can effectively accelerate standard classifiers by several
orders of magnitude, without changing the classifier at all.

Like other, “fast”, methods we use a cascade of rejectors, but we use a different type of
filters and a different type of feature selection method. We take our features to be the
approximated mean and variance of image segments, where every image segment consists
of pixels that have similar behavior across the entire image set. As a result, our features
are derived from the data and do not have to be hand crafted for the particular object of
interest. In fact they do not even have to form contiguous regions. We use only a small
number of representative pixels to calculate the approximated mean and variance, which
makes our features very fast to compute during detection (in our experiments we found that
our first rejector rejects almost 50% of all image patches, using just 8 pixels). Finally, the
number of segments we use is quite small which makes it possible to exhaustively calculate
all possible rejectors based on single, pairs and triplets of segments in order to find the best
rejectors in every step of the cascade. This is in contrast to methods that construct a huge
feature bank and use a greedy feature selection algorithm to choose “good” features from
it. Taken together, our algorithm is fast to train and fast to test. In our experiments we train
on a database that contains several thousands of face images and roughly half-a-million
non-faces in less than an hour on an average PC and our rejection module runs at several
frames per second.

2 Algorithm

At the core of our algorithm is the realization that feature representation is a crucial ingredi-
ent in any classification system. For instance, the Viola-Jones box filters are extremely effi-
cient to compute using the “integral image” but they form a large feature space, thus placing
a heavy computational burden on the feature selection algorithm that follows. Moreover,
empirically they show that the first feature selected by their method correspond to mean-
ingful regions in the face. This suggests that it might be better to focus on features that



correspond to coherent regions in the image. This leads to the idea of image segmentation,
that breaks an ensemble of images into regions of pixels that exhibit similar temporal be-
havior. Given the image segmentation we take our features to be the mean and variance of
each segment, giving us a very small feature space to work on (we chose to segment the
face image into eight segments). Unfortunately, calculating the mean and variance of an
image segment requires going over all the pixels in the segment, a time consuming pro-
cess. However, since the segments represent similar-behaving pixels we found that we can
approximate the calculation of the mean and variance of the entire segment using quite a
small number of representative pixels. In our experiments, four pixels were enough to ad-
equately represent segments that contain several tens of pixels. Now that we have a very
small feature space to work with, and a fast way to extract features from raw pixels data
we can exhaustively search for all possible combinations of single, pairs or triplets of fea-
tures to find the best rejector in every stage. The remaining patterns should be passed to a
standard classifier for final validation.

2.1 Image Segments

Image segments were already presented in the past [1] for the problem of classification of
objects such as faces or vehicles. We briefly repeat the presentation for the paper to be
self-contained. An ensemble of scaled, cropped and aligned images of a given object (say
faces) can be approximated by its leading principal components. This is done by stacking
the images (in vector form) in a design matrix A and taking the leading eigenvectors of the
covariance matrix C = 1

N
AA

T , where N is the number of images. The leading principal
components are the leading eigenvectors of the covariance matrix C and they form a basis
that approximates the space of all the columns of the design matrix A [11, 9]. But instead
of looking at the columns of A look at the rows of A. Each row in A gives the intensity
profile of a particular pixel, i.e., each row represents the intensity values that a particular
pixel takes in the different images in the ensemble. If two pixels come from the same
region of the face they are likely to have the same intensity values and hence have a strong
temporal correlation. We wish to find this correlations and segment the image plane into
regions of pixels that have similar temporal behavior. This approach broadly falls under
the category of Factor Analysis [3] that seeks to find a low-dimensional representation that
captures the correlations between features.

Let Ax be the x-th row of the design matrix A. Then A
x is the intensity profile of pixel x

(We address pixels with a single number because the images are represented in a scan-line
vector form). That is, Ax is an N -dimensional vector (where N is the number of images)
that holds the intensity values of pixel x in each image in the ensemble. Pixels x and y
are temporally correlated if the dot product of rows A

x and A
y is approaching 1 and are

temporally uncorrelated if the dot-product is approaching 0.

Thus, to find temporally correlated pixels all we need to do is run a clustering algorithm
on the rows of the design matrix A. In particular, we used the k-means algorithm on the
rows of the matrix A but any method of Factor Analysis can be used. As a result, the
image-plane is segmented into several (possibly non-continuous) segments of temporally
correlated pixels. Experiments in the past [1] showed good classification results on different
objects such as faces and vehicles.

2.2 Finding Representative Pixels

Our algorithm works by comparing the mean and variance properties of one or more image
segments. Unfortunately this requires touching every pixel in the image segment during
test time, thus slowing the classification process considerably. Therefor, during train time
we find a set of representative pixels that will be used during test time. Specifically, we
approximate every segment in a face image with a small number of representative pixels
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Figure 1: Face segmentation and representative pixels. (a) Face segmentation and repre-
sentative pixels. The face segmentation was computed using 1400 faces, each segment is
marked with a different color and the segments need not be contiguous. The crosses over-
laid on the segments mark the representative pixels that were automatically selected by
our method. (b) Histogram of the difference between an approximated mean and the exact
mean of a particular segment (the light blue segment on the left). The histogram is peaked
at zero, meaning that the representative pixels give a good approximation.

that approximate the mean and variance of the entire image segment. Define µi(xj) to be
the true mean of segment i of face j, and let µ̂i(xj) be its approximation, defined as

µ̂i(xj) =

∑k

j=1
xj

k

where {xj}
k
j=1

are a subset of pixels in segment i of pattern j. We use a greedy algorithm
that incrementally searches for the next representative pixel that minimize

n∑

j=1

(µ̂i(xj)) − µi(xj))
2

and add it to the collection of representative pixels of segment i. In practice we use four
representative pixels per segment. The representative pixels computed this way are used
for computing both the approximated mean and the approximated variance of every test
pattern. Figure 1 show how well this approximation works in practice.

Given the representative pixels, the approximated variance σ̂i(xj) of segment i of pattern j
is given by:

σ̂i(xj) =
k∑

j=1

|xj − µ̂i(xj)|

2.3 The rejection cascade

We construct a rejection cascade that can quickly reject image patches, with minimal com-
putational load. Our feature space consist of the approximated mean and variance of the
image segments. In our experiments we have 8 segments, each represented by its mean and
variance, giving rise to a 16D feature space. This feature space is very fast to compute, as
we need only four pixels to calculate the approximate mean and variance of the segment.
Because the feature space is so small we can exhaustively search for all classifiers on single,
pairs and triplets of segments. In addition this feature space gives enough information to
reject texture-less regions without the need to normalize the mean or variance of the entire
image patch. We next describe our rejectors in detail.



2.3.1 Feature rejectors

Now, that we have segmented every image into several segments and approximated every
segment with a small number of representative pixels, we can exhaustively search for the
best combination of segments that will reject the largest number of non-face images. We
repeat this process until the improvement in rejection is negligible.

Given a training set of P positive examples (i.e. faces) and N negative examples we con-
struct the following linear rejectors and adjust the parameter θ so that they will correctly
classify d · P (we use d = 0.95) of the face images and save r, the number of negative
examples they correctly rejected, as well as the parameter θ.

1. For each segment i, find a bound on its approximated mean. Formally, find θ s.t.

µ̂i(x) > θ or µ̂i(x) < θ

2. For each segment i, find a bound on its approximated variance. Formally, find θ
s.t.

σ̂i(x) > θ or σ̂i(x) < θ

3. For each pair of segments i, j, find a bound on the difference between their ap-
proximated means. Formally, find θ s.t.

µ̂i(x) − µ̂j(x) > θ or µ̂i(x) − µ̂j(x) < θ

4. For each pair of segments i, j, find a bound on the difference between their ap-
proximated variance. Formally, find θ s.t.

σ̂i(x) − σ̂j(x) > θ or σ̂i(x) − σ̂j(x) < θ

5. For each triplet of segments i, j, k find a bound on the difference of the absolute
difference of their approximated means. Formally, find θ s.t.

|µ̂i(x) − µ̂j(x)| − |µ̂i(x) − µ̂k(x)| > θ

This process is done only once to form a pool of rejectors. We do not re-train rejectors after
selecting a particular rejector.

2.3.2 Training

We form the cascade of rejectors from a large pattern vs. rejector binary table T, where
each entry T(i, j) is 1 if rejector j rejects pattern i. Because the table is binary we can
store every entry in a single bit and therefor a table of 513, 000 patterns and 664 rejectors
can easily fit in the memory. We then use a greedy algorithm to pick the next rejector with
the highest rejection score r. We repeat this process until r falls below some predefined
threshold.

1. Sum each column and choose column (rejector) j with the highest sum.

2. For each entry T (i, j), in column j, that is equal to one, zero row i.

3. Go to step 1

The entire process is extremely fast and takes only several minutes, including I/O. The idea
of creating a rejector pool in advance was independently suggested by [16] to accelerate
the Viola-Jones training time. We obtain 50 rejectors using this method. Figure 2a shows
the rejection rate of this cascade on a training set of 513, 000 images, as well as the number
of arithmetic operations it takes. Note that roughly 50% of all patterns are rejected by the
first rejector using only 12 operations. During testing we compute the approximated mean
and variance only when they are needed and not before hand.
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Figure 2: (a) Rejection rate on training set. The x-axis counts the number of arithmetic
operations needed for rejection. The y-axis is the rejection rate on a training set of about
half-a-million non-faces and about 1500 faces. Note that almost 50% of the false patterns
are rejected with just 12 operations. Overall rejection rate of the feature rejectors on the
training set is 88%, it drops to about 80% on the CMU+MIT database. (b) Rejection rate
as a function of image segmentation method. We trained our system using four types of
image segmentation and show the rejector. We compare our image segmentation approach
against naive segmentation of the image plane into horizontal blocks, vertical blocks or
random segmentation. In each case we trained a cascade of 21 rejectors and calculated their
accumulative rejection rate on our training set. Clearly working with our image segments
gives the best results.

We wanted to confirm our intuition that indeed only meaningful regions in the image can
produce such results and we therefor performed the following experiment. We segmented
the pixels in the image using four different methods. (1) using our image segments (2)
into 8 horizontal blocks (3) into 8 vertical blocks (4) into 8 randomly generated segments.
Figure 2b show that image segments gives the best results, by far.

The remaining false positive patterns are passed on to the next rejectors, as described next.

2.4 Texture-less region rejection

We found that the feature rejectors defined in the previous section are doing poorly in
rejecting texture-less regions. This is because we do not perform any sort of variance
normalization on the image patch, a step that will slow us down. However, by now we
have computed the approximated mean and variance of all the image segments and we
can construct rejectors based on all of them to reject texture-less regions. In particular we
construct the following two rejectors

1. Reject all image patches where the variance of all 8 approximated means falls
below a threshold. Formally, find θ s.t.

σ̂(µ̂i(x)) < θ i = 1...8

2. Reject all image patches where the variance of all 8 approximated variances falls
below a threshold. Formally, find θ s.t.

σ̂(σ̂i(x)) < θ i = 1...8

2.5 Linear classifier

Finally, we construct a cascade of 10 linear rejectors, using all 16 features (i.e. the approx-
imated means and variance of all 8 segments).
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Figure 3: Examples. We show examples from the CMU+MIT dataset. Our method cor-
rectly rejected over 99.8% of the image patches in the image, leaving only a handful of
image patches to be tested by a “slow”, full scale classifier.

2.6 Multi-detection heuristic

As noted by previous authors [15] face classifiers are insensitive to small changes in posi-
tion and scale and therefor we adopt the heuristic that only four overlapping detections are
declared a face. This help reduce the number of detected rectangles around and face, as
well as reject some spurious false detections.

3 Experiments

We have tested our rejection scheme on the standard CMU+MIT database [13]. We created
a pyramid at increasing scales of 1.1 and scanned every scale for rectangles of size 20× 20
in jumps of two pixels. We calculate the approximated mean and variance only when they
are needed, to save time.

Overall, our rejection scheme rejected over 99.8% of the image patches, while correctly de-
tecting 93% of the faces. On average the feature rejectors rejected roughly 80% of all image
patches, the textureless region rejectors rejected additional 10% of the image patches, the
linear rejectors rejected additional 5% and the multi-detection heuristic rejected the remain-
ing image patterns. The average rejection rate per image is over 99.8%. This is not enough
for face detection, as there are roughly 615, 000 image patches per image in the CMU+MIT
database, and our rejector cascade passes, on average, 870 false positive image patches, per
image. This patterns will have to be passed to a full-scale classifier to be properly rejected.
Figure 3 give some examples of our system. Note that the system correctly detects all the
faces, while allowing a small number of false positives.

We have also experimented with rescaling the features, instead of rescaling the image, but
noted that the number of false positives increased by about 5% for every fixed detection
rate we tried (All the results reported here use image pyramids).

4 Summary and Conclusions

We presented a fast rejection scheme that is based on image segments and demonstrated it
on the canonical example of face detection. Image segments are made of regions of pixels
with similar behavior over the image set. The shape of the features (i.e. image segments)
we use is data-driven and they are very cheap to compute The relationships between the
mean and variance of image segments are used to form a cascade of rejectors that can reject
over 99.8% of the image patches, thus only a small fraction of the image patches must be



passed to a full-scale classifier. The training time for our method is much less than an hour,
on a standard PC. We believe that our method can be used to accelerate standard machine
learning algorithms that are too slow for object detection, by serving as a gate keeper that
rejects most of the false patterns.
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