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Abstract

This paper identifies a broad class of nonlinear dimensionality reduction
(NLDR) problems where the exact local isometry between an extrinsically
curved data manifold M and a low-dimensional parameterization space can
be recovered from a finite set of high-dimensional point samples. The method,
Geodesic Nullspace Analysis (GNA), rests on two results: First, the exact
isometric parameterization of a local point clique on M has an algebraic re-
duction to arc-length integrations when the ambient-space embedding of M
is locally a product of planar quadrics. Second, the locally isometric global
parameterization lies in the left invariant subspace of a linearizing opera-
tor that averages the nullspace projectors of the local parameterizations. We
show how to use the GNA operator for denoising, dimensionality reduction,
and resynthesis of both the original data and of new samples, making such
“submanifold” methods an attractive alternative to subspace methods in data
analysis.

Nonlinear dimensionality reduction is the problem of constructing a low-dimensional
representation of high-dimensional sample data. The data is presumed to sample a d-
dimensional manifold M that is embedded in an ambient space RD, with D > d. The goal
is to separate the extrinsic geometry of the embedding—how M is shaped in RD—from
its intrinsic geometry—the native d-dimensional coordinate system on M . For example,
if we know how the manifold of faces is embedded in the space of images, the intrinsic
geometric can be exploited to edit, compare, and classify faces, while the extrinsic ge-
ometry can be exploited to detect faces in images and synthesize new face images. In
computer vision it is common to approximate this manifold with linear subspaces fitted
to sample images via principal components analysis (PCA)—a gross approximation, yet
enormously successful for data interpolation, extrapolation, compression, denoising, and
visualization. Ultimately, NLDR “submanifold” methods will offer the same functionality,
but with more fidelity to the true data distribution, because most of these operations are
exclusive to the intrinsic or extrinsic geometry of M .

Whereas PCA aims to preserve global structure (covariance about the data mean)
NLDR methods aim to preserve local structure in small neighborhoods on the manifold.
Differential geometry teaches that the local metric on infinitesimal neighborhoods plus
information about the connectivity of those neighborhoods fully determines a manifold’s
intrinsic geometry [7]. This is approximated for finite data by imposing a neighborhood
graph on the data and measuring relations between neighboring points in graph cliques,
typically point-to-point distances [18, 21, 2], the coordinates of points projected into a lo-
cal tangent space [4, 8, 22] or local barycentric coordinates [15]. A key assumption in this



literature is that local linear structure of point cliques in the ambient space can be used
as a proxy for metric structure in corresponding neighborhoods on M . E.g., distances in
RD stand for geodesic arc-lengths on M . The graph then guides the combination of all
local metric constraints into a quadratic form whose maximizing or minimizing eigen-
functions provide a minimum squared error basis for embedding the manifold in Rd . For
discrete data, the quadratic form is a gram matrix whose entries can be interpreted as
inner products between points in an unknown space where the manifold is linearly em-
bedded, therefore NLDR is a kernel method, albeit with unknown kernel function [12]. Of
particular interest for signal processing and data modeling is the case where the sampled
manifold patch M is locally isometric to a connected patch of Rd , because in the continua
limit of infinite sampling, the optimizing eigenfunctions yield a flat immersion that per-
fectly reproduces the local data density and intrinsic geometry of the manifold [8]. Thus
most NLDR “embedding1 algorithms” strive for isometry.

NLDR is built on mathematical foundations that were laid down over the last 40 years
in the problem area of graph embeddings [19, 20, 9, 10, 6]; the current rapid advances in
machine learning revolve around the insight that dimensionality reduction can be shoe-
horned into this framework by estimating a graph and local metric constraints to cover
datasets of unorganized points [18, 15, 2, 4, 8]. This insight is also the Achilles’ heel of
NLDR methods, which suffer two mutually exacerbating maladies when presented with
finite data embedding problems:

1. Local metric constraints are systematically distorted because data drawn from an
extrinsically curved manifold is not locally linear at any finite scale. I.e. distances
in RD are a biased approximation of geodesic arc-lengths on M .

2. If the local estimated metric constraints contain any errors, the global solution has
minimum mean squared error (MMSE) with respect to an invented system of neigh-
borhoods rather than w.r.t. the empirical data distribution.

Accordingly, NLDR methods have been noted, though somewhat unfairly, for the inconsis-
tency and instability of their results [1], especially under small changes to the connectivity
graph.

This paper contributes two results that address these problems:

1. There exists an interesting and useful class of extrinsically curved data manifolds—
namely those that are are locally products of planar quadrics (PPQ)—whose local
metric structure can be recovered exactly from finite sampling. Most developable
surfaces are locally PPQ and all smooth manifolds have local PPQ approximations
that are second-order accurate in directions of maximal curvature. Section 3 gives a
least-squares procedure for computing geodesic parameterizations of point cliques
under this model.

2. The coordination of this local metric structure into a globally consistent isometric
immersion in Rd can be uniquely determined from a linearizing operator that av-
erages the collected nullspaces of local clique parameterizations. The operator iso-
lates the component of data that is a nonlinear function of the local metric structure

1Their names notwithstanding, NLDR “embedding algorithms” really only compute immersions; whether or
not an immersion is an embedding and/or a local isometry is a property of the manifold, not of the algorithm
[7].



(i.e., extrinsic curvature and noise) and defines a spectrum of data transformations
that range from local denoising to global dimensionality reduction. Because this
operator averages out artifacts due to uneven coverage of the data by the clique
graph, the immersion has the MMSE property that error, if any, is distributed evenly
over the data.

This paper will use the acronym GNA (Geodesic Nullspace Analysis) for the combination
of these methods. GNA offers much of the functionality of subspace methods—data re-
duction, denoising, out-of-sample generalization, and sequential updating with new data
points. It also offers significantly reduced error on benchmark NLDR problems, where
ground truth is known, and also appears to perform well with real datasets. Finally, as a
theoretical nicety, there are manifolds whose isometric parameterization can be recovered
exactly from finite samples, an impossibility under locally linear models.

1 Preliminaries
Let M be a connected manifold patch that is locally isometric to an open subset of Rd

and embedded in ambient Euclidean space RD>d by an unknown C2 function; M is a
Riemannian submanifold of RD with induced metric. M has extrinsic curvature in RD

but zero intrinsic curvature. However its isometric immersion in Rd may have nontrivial
shape with concave boundary and nonzero genus. The data matrix X .= [x1, · · · ,xN ] ∈
RD×N records the location of N points sampled from M in RD. The desired isometric
immersion Yiso

.= [y1, · · · ,yN ] ∈ Rd×N must eliminate the extrinsic curvature to recover
the isometry up to rigid motions in Rd .

Let G be a bipartite clique graph that associates N samples to M cliques such that
the data is covered by overlapping point cliques. G is specified by adjacency matrix
M = [m1, · · · ,mM] ∈RN×M with Mnm > 0 iff the nth point is in the mth clique. Usually G
is be constructed so that for every point forms a clique with its closest neighbors; fewer
cliques are sufficient as long as the graph is rigid when embedded in the target space.
For most of this paper it is assumed that M is an indicator matrix with Mnm ∈ {0,1}.
Finally, let Xm ∈ Rd×k contain a locally isometric parameterization of the k points in the
mth clique; Euclidean pairwise distances in Xm are equal to geodesic distances on M .
One may visualize Xm as a rigid k-pointed star in Rd whose arms (graph edges) terminate
with flexible joints (graph vertices). We will first address the global coordination problem,
which seeks a minimal-distortion assembly of these cliques into a global parameterization
that is locally isometric to M , isomorphic to G , and globally rigid in Rd . We then examine
the local parameterization problem, which seeks to compute the clique parameterizations
Xm from samples in RD.

2 Global coordination via nullspaces
GNA coordination is a kernel method in two senses of the word: It constructs a row-space
immersion error matrix that, after simple tranformation, yields a kernel matrix whose
elements approximate inner-products between points in the target embedding. This matrix
merges the nullspaces (also known as kernels) of local coordinate neighborhoods on the
manifold. GNA takes a trivial property of subspace methods—that the data lives in the
nullspace of its nullspace—and generalizes this global property to a local operator.



We are interested in two spaces associated with a clique’s local parameterization Xm:
Pm

.= span([1,X>m ]) ∈ Rk×(d+1) is an orthogonal basis of the rowspace of Xm and trans-
lations thereof; Qm

.= null(P>m) ∈ Rk×(k−d−1) is an orthogonal basis for the complemen-
tary nullspace. Together they satisfy Xm[Pm,Qm] = [Xm,0] and [Pm,Qm]>[Pm,Qm] = I,
the identity matrix. Pm spans the range of affine (linear plus translation) functions of
Xm; Qm spans the range of nonaffine functions of Xm (equivalently, nonlinear func-
tions of [X>m ,1]>). The intrinsic coordinates of manifold M project exclusively onto
Pm; the extrinsic curvature of M in the ambient space projects exclusively onto Qm.
Thus when the local parameterizations are consistent with isometry (i.e., they can be
assembled into a globally consistent parameterization Yiso using nothing but rigid trans-
forms), then any clique taken from Yiso has zero projection onto the corresponding lo-
cal nullspace Qm. Equivalently, Yiso lies in the nullspace of a union of nullspaces:
Yiso[F1Q1, · · · ,FMQM] = 0, where indicator matrix Fm ∈ {0,1}N×(k+1) has (Fm)i j = 1
if the ith data point is represented by the jth point the mth clique. This nullspace con-
straint is the basis of the error measure in Charting [4] and Linear Tangent Space Align-
ment (LTSA) [22], and can yield perfect immersions given perfect local parameterizations.
However, if there are local parameterization errors, the least-squares problem associated
with the nullspace constraint distributes error according to graph coverage, rather than
evenly across the points as we would desire from a minimum squared error solution. In
GNA, this is accomplished with a row-space linearizing operator

K .= (∑
m

Fm(I−PmP>m)F>mdiag(mm))diag(M1)−1

that has the following properties:

Proposition 1. (Spectral radius) K and I−K are positive semidefinite with eigenvalues
bounded in [0,1].

Proof. K is a weighted average of idempotent orthogonal projectors.

Proposition 2. (Linearization) The product YK isolates the component of any global
parameterization Y that is not affine to the local parameterizations of M , averaged over
cliques and assigning equal weight to all points.

Proof. The projector QmQ>m = I−PmP>m isolates the component of YFm (points in the
mth clique of Y) that is not affine to the local coordinates Xm. For each point, the diagonal
matrices then make a weighted average of these errors, averaging over cliques.

It is then natural to define the error of any global parameterization Y as the Euclidean
norm of its non-affine component, ‖YK‖F = trace(YKK>Y>)1/2.

The transform X→ X(I−K) attenuates the component of X that is locally orthogo-
nal to M , i.e., noise and, on the clique scale, extrinsic curvature. It is analogous to noise
suppression in PCA via projection in and out of the principal subspace. Repeated trans-
forms X→X(I−K)n smooth and unroll the data by making the data closer and closer to
rank-d in larger and larger neighborhoods. Ultimately we obtain a parameterization that
lies in the error-minimizing affine subspace Y = argminYY>=I trace(YKK>Y>), whose
rows are the d + 1 left singular vectors of K associated with its minimal singular values.
Under perfect local isometry, this is the exact nullspace of K. Because K is invariant to
global translations of the immersion, the nullspace contains a nuisance constant vector 1;



we may write w.l.o.g. Y> = [1,Y>aff]. One of many ways to isolate Yaff is to flip the spec-
trum of KK> and then remove any variance associated with translations: Using centering
matrix T .= I− 1

N 11>, the GNA kernel is T(I−KK>)T = T−KK> and its PCA is

Yaff
.= arg max

YY>=I
trace(Y(T−KK>)Y>)

Yaff is maximally affine to M everywhere; moreover, under the following conditions, the
affine map to M is the same for all cliques, modulo translation:

Theorem 1. (Coordination) If M allows an isometric immersion Yiso in Rd upon which
clique graph G is globally rigid, and every local parameterization Xm is affine to its
d-dimensional patch of M , then Yiso lies in the subspace spanned by Yaff.

Proof. By definition, any immersion drawn from the row-space of Yaff is minimally non-
affine to all local parameterizations {Xm}M

m and the corresponding patches of M (and,
indeed, perfectly affine if all Xm are consistent with an isometric immersion). To show that
Yaff spans an isometric immersion, recall that global rigidity implies that the affine maps
taking any two cliques in Yaff to their corresponding cliques in Yiso are fully constrained
with respect to each other. Consider any two cliques in Yaff that share points. If their affine
maps to Yiso differ, then the kernel KK> must admit an immersion which is a nonlinear
function of the shared points, which is a contradiction. Therefore all cliques must share
the same affine map from Yaff to Yiso, making Yaff globally affine to Yiso.

Note that a manifold that is locally isometric to Rd does not necessarily have an em-
bedding (a topology-preserving map from M ) or locally isometric immersion in Rd .
It may have either, neither, or both. For example, lampshades, Moebius strips, and
corkscrew ramps are bounded R3 submanifolds that are locally isometric to R2, but they
cannot be flattened without distortion, catastrophes (a fold), and self-crossings, respec-
tively. GNA will embed the lampshade with smooth distortion, immerse the Moebius strip
with a fold, and isometrically immerse the ramp with self-crossings. In cases such as the
lampshade, the nullspace averaging in K offers the following assurance:

Corollary 1. (Minimal distortion) If M does not have a locally isometric immersion in
Rd , Yaff is the immersion for which, on average, each point is minimally displaced from a
neighborhood configuration whose parameterization is linear in that of the corresponding
patch of M .

The coordination may also be due to errors in overlapping local parameterization that
make them inconsistent. However, because the GNA kernel averages constraints on points
rather than summing constraints over cliques, GNA immersions are faithful to the data in
the following sense:

Corollary 2. (MMSE) Yaff has minimum squared error with respect to the average local
parameterization of each point relative to its neighbors.

In sum, the kernel KK> is distinguished in that it does not allow the embedding to be
a nonlinear function of the local parameterizations (as is possible in other local methods
such as LLE, HLLE, and Laplacian Eigenmaps, which employ subsets or approximations
of GNA’s subspace constraints), nor does it distribute distortion errors preferentially to
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Figure 1: Denoising of samples from a 1D manifold embedded in 2D. The denoising pro-
jection X→ X(I−K) eliminates most of the data variance that is locally orthogonal to
the manifold. The null mode (eigenvector) of K gives a basis for an isometric parameter-
ization (blue); higher modes give a basis for the global shape of the ambient embedding
(red and green); and the highest modes give a basis for local sample noise (yellow).

points that have low degree in the clique graph (a universal problem in the NLDR litera-
ture).

The actual isometry Yiso = AYaff is found by solving for a linear shear A ∈Rd×d that
makes all clique parameterizations isometric to their local parameterizations on M . A
is a shear because isometry is invariant to rotation and translation. To factor these out,
let Xm be a centered local parameterization on M and let Ym be a set of coordinates
from Yaff for the same clique, centered and rotated into alignment with Xm via Procrustes
method [11, §12.4.1]. Then the least-squares estimate of the shear is (up to rotation) A =
(XS Y>S )(YS Y>S )−1 with YS

.= [YaDa,YbDb, · · · ], XS
.= [XaDa,XbDb, · · · ] where Dm

.=
diag(F>mmm)diag(F>mM1)−1 duplicates the error averaging of the kernel.

The left singular vectors of K are also the eigenvectors of an implied graph Lapla-
cian2 L = KK>. In this view they provide a harmonic basis for deformations of the
immersion: The low-frequency modes allow for large-scale curvature of the data while
the high-frequency modes allow for local distortions such as noise. The left eigenvectors
of K have essentially the same structure (see figure 1) thus thresholding the eigenvalues
of I−K to 0 and 1 produces an operator that suppresses high-frequency artifacts such as
noise while preserving the ambient shape of the data.

2.1 Generalization
NLDR becomes useful to signal processing when new points can be mapped between
the ambient and target spaces. Out-of-sample extensions [3] give the immersion of a new

2and of the matrix TCT of centered commute times on the associated continuous-time Markov chain.



point that is constrained by known points (but not vice versa). The basic idea is to compute
a vector containing the kernel inner product of the new point with all original points, and
project it onto the eigenvectors of the original immersion. The application of this idea to
GNA leads to a simple formula: Let K′ be a linearizing operator constructed as above, but
for a data-subset matrix [x,xi,x j, · · · ], where x ∈RD is the new point and {xi,x j, · · ·} ⊂X
are those original data points that belong to cliques that the new point x will join. K′
is constructed using the same clique parameterization functions fm : RD → Rd as in the
original K, but these functions are also applied to x. The immersion of x is

y ∈ Rd =−[0,yi,y j, · · · ](K′k′>1 /‖k′1‖2)

for {yi,y j, · · ·} ⊂ Yiso and k′1 the first row of K′. If x is assigned to just one clique Xm,
this reduces to affine regression; the row-space map taking Xm into the global isometric
parameterization is applied to x.

The same idea can be used for denoising novel points in the ambient space, assuming
that fm(·) is pseudo-invertible to yield points on a surface tangent to M . The ambient
Euclidean distance from a denoised point x′ to f−1

m ( fm(x)) is

‖x′− f−1
m (−[0,Xm](Q′mq′>m1/‖q′>m1‖2)‖

where q′m1 is the first row of Q′m, an orthogonal basis of null([1, [ fm(x),Xm]>]). Just as
X(I−K) denoises the original data by averaging clique constraints on each point, we can
average the backprojections f−1

m (·) over all cliques containing x to obtain a least-squares
estimate of denoised x′. If fm(m) is an orthogonal projection then this scheme reduces to
the familiar form

x′ = −[0,xi,x j, · · · ](K′k′>1 /‖k′1‖2),

which shows that the out-of-sample extensions for denoising and immersion are consistent
under first-order assumptions. This scheme can also be used to map from the target space
to the ambient space, but there is no reason to expect that it will generalize well off the
boundary of the manifold—an important caution because datasets can have very complex
boundaries that are hard to gauge from immersions (see figure 7).

It is also possible to treat a new point as information about the manifold that could
change the immersion of all points. Taking advantage of near-linear-time updating schemes
for eigenvalue decomposition (EVD) such as Lanczos rank-1 updating, points and cliques
may be added or modified without requiring a complete recomputation:

Proposition 3. Updating constraints on k points requires at most 2k rank-1 updates to
the EVD.

Proof. The new error matrix can be written K + J, where J has k nonzero columns cor-
responding to the affected points. Knowing the EVD of T−KK>, we seek the EVD of
T− (K + J)(K + J)> = T−KK> − (KJ> + JK>)− JJ>. The span of the parenthe-
sized summand is the combined span of the nonzero columns of J and the corresponding
columns of K. Therefore it has rank 2k at most and includes JJ> in its span.

To reduce the update to a series of rank-1 updates, the summands need to be decom-
posed into eigenpairs. This can be done in O(Nk3) time by orthogonalizing [J,K] to get
a subspace basis, projecting the summands into this subspace, performing an EVD of the
resulting 2k×2k symmetric matrix, and using the eigenvectors to counter-rotate the basis.
The resulting basis vectors and eigenvalues are then used for sequential rank-1 updates of
the immersion EVD.



2.2 Sample complexity
If K were constructed using just some subspace of the each local nullspace Qm, the immer-
sion might not be fully determined, because K would also be invariant to local distortions.
This leads to a simple but useful insight about clique size, which determines the dimen-
sion of the nullspace. For a d-dimensional immersion, one needs at least k≥ d +2 points
to construct a nonempty local nullspace and a further

(d+1
2

)
− 1 points for an estimator

of the local Hessian to be contained in the span of the nullspace, for a total of k ≥
(d+2

2

)
points. Thus to totally eliminate nonlinearities up to second order, any local NLDR method
that compares prospective immersions to local parameterizations will require clique sizes
of k = O(d2) points.

This does not exclude the possibility that using fewer points or incomplete nullspace
constraints will lead to an immersion with low distortion, because rigidly overlapping
cliques are generally subject to the union of their constraints. GNA works quite well on
data manifolds with dense clique coverage even when k = d + 2. The quadratic forms
defined by locally linear embedding (LLE) [15] and Hessian LLE (HLLE) [8] are locally
invariant to k−1 and k−

(d+2
2

)
local distorting degrees of freedom, respectively, that pro-

vide room for errors to manifest in the final immersion, yet heavy overlap eliminates most
of these errors. GNA immersions, however, are better constrained when the manifold is
sparsely covered with fewer but larger cliques, a useful strategy for reducing complexity.

2.3 Point weighting
Error can creep into immersions through sampling noise, numerical error, and local pa-
rameterization errors. The GNA operator has a nice property in this respect: The error
associated with perturbing a point declines quadratically with its distance from the center
of each clique it participates in. In particular, consider the unweighted nullspace projec-
tion error ‖YFmQmQ>m‖F of global parameterization Y with respect to the mth clique. Let
immersion point yi ∈Y correspond to clique point xi ∈Xm. The error associated with per-
turbing either point declines quadratically with the distance of xi from the clique center,
denoted xm:

Proposition 4. Perturbations of yi or xi cause ‖YFmQmQ>m‖F to vary as 0 < a−b‖xi−
xm‖2 for some constants a,b > 0 independent of i.

Proof. Let Pm be an orthogonal basis of the columnspace of [1,X>m ]. W.l.o.g., let the first
column of Pm be constant. By orthogonality, all other columns must sum to zero and
are thus linear transforms of centered Xm. Consequently values in the ith row of Pm are
linear in (xi−xm), and the ith element on the diagonal of projector PmP>m is quadratic in
‖xi−xm‖. The norm of the inner product of Y with QmQ>m = I−PmP>m therefore varies
linearly with −‖xi− xm‖2. Small perturbations ∆xi of xi cause the norm to vary with
−‖xi + k−1

k ∆xi−xm‖2 ≈−‖xi−xm‖2.

Thus nullspace projectors are naturally more tolerant of error at the periphery of a
clique, and immersions are determined more by central points than by peripheral points.

That said, there are conditions under which such tolerance is not enough. For ex-
ample, if the manifold is locally a second-order algebraic surface (parabolic, hyperbolic,
or elliptic), then the error in the parameterization by linear projection onto the tangent
space estimate grows as O(‖x̂i−x‖3), with ‖x̂i−x‖ being the distance of xi to the clique



mean in the tangent space. Thus for locally linear models one may profitably adjust the
point-clique weights Mmn to further discount errors associated with peripheral points.

3 Local isometric parameterizations
NLDR uses Euclidean distances in the ambient space as a proxy for geodesic distances
on the manifold, but this is a biased approximation that always underestimates true dis-
tances. Where ever a manifolds curve away from their tangent spaces, this locally linear
view of the manifold induces a “fish-eye” distortion that causes the global parameteriza-
tion to contract in places and directions where the manifold has high extrinsic curvature.
With finite data, it is impossible to define a clique size that eliminates this distortion, and
many NLDR algorithms require large cliques (for rigidity or stability) that exacerbate the
problem.

Local distortions can be substantially reduced and sometimes eliminated entirely by
modelling clique curvature with algebraic surfaces of degree two. We show that these can
be fitted to data to yield exact isometric parameterizations on a nontrivial class of quadric
manifolds—those that are products of planar quadrics (PPQ), i.e., manifolds defined as
products of parabolic, elliptic, hyperbolic, and straight plane curves. For example, gener-
alized cylinders and minimal isometric immersions of d-torii are locally PPQ embeddings
of intrinsically flat manifolds. When a manifold is not locally PPQ, the PPQ model is
essentially a mixed first- and second-order approximation, the second-order terms being
fitted in the directions of where the manifold exhibits greatest curvature. For example
the benchmark NLDR “Swiss roll” problem [18, 15, 4, 8] is the product manifold of an
Archimedes spiral and a line segment; to second order the spiral f (θ) = (θcosθ,θsinθ)
is elliptic for θ < π/2, parabolic at θ = π/2, and hyperbolic for θ > π/2.

Consider a local neighborhood around point p ∈M ⊂ RD in which the ambient em-
bedding of d-dimensional M is locally quadric and has extent in a 2d-dimensional affine
subspace spanned by an orthogonal basis Tp ∈ RD×2d . Clearly such a neighborhood ex-
ists and supersets the infinitesimal neighborhood in which M is locally linear around p.
In this neighborhood, M can be fitted by a quadric hypersurface Qp ⊂ RD of dimension
2d−1 having matrix equation x′>Fpx′ = 0 for symmetric Fp and local homogeneous co-

samples from [0,3]×[0,4]⊂R2

embedded in R
as open tube

3

+original & •recovered parameterizations

Figure 2: The GNA/PPQ parameterization of points sampled from this cylinder-shaped
manifold is exact (up to numerical limits of floating-point square-root calculations) for
any rigid clique graph having sufficient samples in each clique to determine a quadric.
This includes sparse cliques, nonlocal cliques, and a graph consisting of a single clique.



ordinates x′ .= [(x−p)>Tp,1]> ∈ R2d+1. Strictly speaking, in this neighborhood M is
a submanifold of Qp. Of practical import is the fact that the surface Qp is a good local
approximation of M over a much larger area than any linear model. The main result
is that M ’s local PPQ decomposition and isometric parameterization can be determined
from samples:

Theorem 2. (PPQ) If d-dimensional M is locally a product of planar quadrics, then Fp
and its PPQ decomposition are recoverable with probability 1 from O(d2) random samples
spanning Tp.

The essence of the constructive proof is that Fp has a canonical form that reveals the
pairing of dimensions into planar quadrics. The planar quadrics can then be independently
integrated for arc-length, giving a true geodesic parameterization.

Proof. (PPQ theorem 2) Empirically, a quadric is fitted to multivariate data via a matrix B
containing the scatter of all the pairwise products of the ordinates of x′: Bpq = ∑i x′pix

′
qi

where x′pi is the pth element of homogeneous point x′i. The minimizing eigenvector of
symmetric nonnegative definite B contains the elements of quadric equation coefficient
matrix Fp, while the associated eigenvalue gives the sum squared error of the fit, such
that ∑i x′>i Fpx′i = λmin(B). Since this is a linear system of

(2d+1
2

)
unknowns, the sam-

ple complexity is O(d2). A partial EVD diagonalization
[

V 0
0 1

]>
Fp

[
V 0
0 1

]
=[

diag(a) b/2
b>/2 c

]
gives a subspace rotation inside Tp such that Q is expressed as a

sum of quadratic functions q j(·), one in each dimension:

x′>Fpx′ =
2d

∑
j

q j(z j)+ c .= (
2d

∑
j

a jz2
j +b jz j)+ c = 0, (1)

where z .= [z1, · · ·z2d ]> = V>T>p (x− p) for a j ∈ a and b j ∈ b. This diagonalization is
unique up to possible multiplicity in the eigenvalues a j ∈ a. First consider the case where
all eigenvalues are distinct. If M is locally PPQ, then any one of its constituent planar
curves must be expressed as the linear combination of two of Q ’s quadratic summands,
e.g., riqi(zi)+q j(z j)+ c j = 0 for ri ∈ R\0 and c ∈ R because the EVD gives the only or-
thogonal basis that eliminates all pairwise products ziz j that couple the dimensions multi-
plicatively. In equation 1 all of the dimensions are coupled additively but if M is locally
PPQ then the 2d quadratic summands in equation 1 must be paired off to form d orthog-
onal independent quadrics, each specifying a 1D curve in an R2 subspace spanned by a
pair of the eigenvectors in V. Therefore M is locally a submanifold of Q . The pairing
can be determined from data because the vector of values of each summand qi, iterated
over all points, is a 1D affine transform of the value vector of its paired summand q j. A
linear regression to find satisfying pairs is fully determined when the summand vectors
are linearly independent in R2d , requiring at least 2d points.

To handle eigenvalue multiplicities, recall that the m eigenvectors {vi,v j, · · ·} ⊂ V
associated to a repeated eigenvalue {ai = a j = · · ·} ⊂ a are determined only up to an Rm

mutual rotation. Local PPQ structure of M implies that there exists a rotation of these
eigenvectors and the linear coefficients {bi,b j, · · ·} such that the associated quadratic
summands can be paired off with each other or with summands of other eigenvalues.
There are four causes and resolutions of multiplicity:



1. Each parabola contributes an a j 6= 0 for its abscissa and an ai = 0 for its ordinate,
thus ordinates of all parabolas are rotated together in the nullspace. The rotation can
be recovered by regressing the corresponding summand value vectors onto those of
nonzero a j.

2. Each independent linear dimension contributes a summand with ai = bi = 0. These
dimensions constitute the remainder of the nullspace after parabolic dimensions are
removed via pairing.

3. Each perfect circle contributes a pair ai = a j 6= 0. Being a circle, the pairing is
revealed by the multiplicity and invariant to rotation of the associated eigenvectors.

4. An accidental multiplicity, with ai = ak being parameters from two independent
planar curves, is possible because each planar pair can be arbitrarily weighted in
the quadratic form F. This implies that scatter matrix B has a d-dimensional null
space of equivalent F parameterizations. In that space the subset of parameteriza-
tions having accidental multiplicities has dimension < d and thus measure zero.
Therefore the pairing is fully determined with probability 1.

PPQ manifolds have straightforward isometric parameterizations: Because a locally
product manifold is locally isometric to the product of its totally geodesic submanifolds,
a PPQ manifold is isometric to the product space of arc-length parameterizations of each
quadric (see [16] for stronger results). If M is globally PPQ (e.g., an open cylinder in
R3), then this procedure can parameterize the entire manifold; see figure 2. Parabolas and
circles offer straightforward analytic formulae for arc-length parameterizations; ellipses
and hyperbolas do not but that problem is mooted in practice by robust and efficient
numerical solutions for their arc-length integrals. In our setting, there is no ambiguity
over which branch of a hyperbola or side of an ellipse to integrate for arc-length because
M is locally connected and isometric to a Euclidean space.

Not all intrinsically flat manifolds are locally PPQ; e.g., a cone in R3 is not a product
manifold. In fact the PPQ decomposition is trivially extended to cones by considering all
triplets of quadratic summands from diagonalized Fp; a cone is diagnosed as three sum-
mands that have a constant empirical sum and quadratic coefficients of varied sign. The
decomposition remains well-defined because cones do not present any additional source
of eigenvalue multiplicity. The remaining class of developable surfaces in R3—tangent
surfaces of space curves—are not quadric but have piecewise conic approximations that
are sufficiently accurate for industrial applications [5].

The PPQ parameterization is exact with data sampled from conforming manifolds.
Although offered mainly in service of a theoretical argument, it also appears to work
well with nonconforming manifolds and in low-noise settings. However one may expect
that PPQ fitting will should be vulnerable to noisy data because it works by removing
excess degrees of freedom from a flexible data model, and the minimized error is al-
gebraic, not geometric. As the level of noise increases, it is prudent to retreat to more
robust procedures that impose simpler models on the data, trading model expressivity
for stability of estimated parameters to data perturbations. For example, if M is locally
PPQ, then in a slightly smaller neighborhood around p, each of its constituent planar
curves has a good second-order (or exact) parabolic fit. I.e., there is a set of pairings
aiz2

i + bizi + ci ≈ b jz j + c j with zi an ordinate in some orthogonal basis of the tangent
space, z j an ordinate in some orthogonal basis in the normal space, and equality for linear



or parabolic submanifolds. This product of planar parabolics (PPP) model can be fitted
to data by partitioning the local data space into an Rd tangent space and an Rd normal
space (e.g., via local PCA), estimating Hessians in each of the normal dimensions, then
solving for a rotation in the tangent space that diagonalizes a matrix whose columns are
the diagonals of the Hessians. This is possible for all smooth Riemannian submanifolds
of RD having flat normal bundles [7, p. 137]. Solving for a rotation of the normal space
that diagonalizes a matrix of all these diagonals gives the quadratic coefficients ai. The
remaining linear (bi) and constant (ci) terms can be recovered via least-squares linear fits.
If the manifold is not locally PPP w.r.t. the tangent space, the second diagonalization will
be approximate; any non-vanishing off-diagonal elements are the quadratic coefficients
of curvatures that are ignored in the PPP fit.

Figure 3 compares this parameteriza- R2 projection of PPP vs. PCA parameterization of T3 torus embedded in R

true coordinates
PCA,               RMSE=0.002038763
PPP geodesics, RMSE=0.000674325

Figure 3: PPP & PCA parameterization errors.

tion to a local PCA. The data randomly
sampled from a patch of a T3 torus em-
bedded isometrically in R6 and contam-
inated with 2% isotropic gaussian noise.
The patch subtends π/10 radians, is not
PPP, and is nearly flat in R6. The PPP
geodesics have 1/3 the error of the PCA
parameterization. One can see in the scat-
ter plot that the PCA points are visibly
offset from the true point locations all around the periphery of the patch.

4 Examples
Figure 4 compares the isometry er-
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Figure 4: Spiral embedding errors of GNA,
LTSA, HLLE, and SDE.

rors of GNA, LTSA, HLLE, and SDE on a
spiral problem taken from the SDE dis-
tribution demo. All methods compute an
embedding that approximates the analytic
arc-length parameterization, but GNA has
an order of magnitude less error than LTSA
and two orders of magnitude less error
than HLLE and SDE, as measured in both
RMSE and subspace angle between each
method’s embedding eigenvector and the
perfect isometric embedding. The GNA
is computed from local PPP parameteri-
zations; if computed from full PPQ pa-
rameterizations (which require numeri-
cal integration) the error decreases by almost an order of magnitude, while if computed
from linear tangent parameterizations the error increases to roughly half that of LTSA.

Figure 5 compares the performance of the GNA and HLLE on the “perforated swiss
roll” demonstration problem generated by test codes distributed with HLLE. This is known
to be problematic for Isomap and LLE. HLLE itself fails catastrophically on a substantial
fraction of first 500 test examples generated; GNA performs robustly. It appears that in the
HLLE failures the Hessian constraint admits enough local distortions to cause the manifold



sampled 2D source manifold; 3D ambient embedding; analytic isometry

top to bottom: GNA, analytic isometry, HLLE (k=14, trial 88)
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Figure 5: The perforated swiss roll. Left to right: The ambient embedding; parameteri-
zations offered by GNA, analytic mapping, and HLLE (showing a catastrophic fold); and
isometry error curves on 500 randomly generated examples for each clique size, sorted
by HLLE error.

Figure 6: Parameterization of points randomly sampled from a trefoil-knotted ribbon
manifold. At left, two views of the manifold’s ambient embedding in R3. At right, points
sampled from the manifold and their isometric GNA embedding in R2. Fine structure in
the sampling pattern is preserved with very high fidelity. The outlines show the edges of
the R2 pre-image of the ribbon manifold.



Figure 7: Front and side views of a GNA immersion of 1000 20×28 face images into R3

with k = 30. A random subset of points are rendered as images. The degrees of freedom
appear to be head rotations, brightness-changing head tilts, and changes in expression.
Below are images synthesized along those degrees of freedom.

to remain partly curved in the eigenbasis; the 2D projection then appears as a fold. Where
HLLE succeeds, GNA reduces isometry errors by any average of 5% to 98%, depending
on neighborhood size.

Figure 6 shows a manifold formed by sweeping a line segment along trefoil-knot
trajectory in R3. The resulting manifold is intrinsically flat but not locally PPQ. Like all
benchmark problems in NLDR, the geometry of this R3 embedding is known and an exact
isometric pre-image in R2 can be deduced. We will compare this known isometry with
the estimate made by GNA from points randomly and noisily sampled from the manifold,
excluding some circular and letter-shaped regions. The GNA embedding reconstructs the
isometric pre-image with errors averaging less than 10−4 times the diameter of the pre-
image, i.e., if the pre-image were a meter across, errors would average < .1mm. This
reflects the precision limit of second-order methods under floating point calculations; i.e.,
the error is of the same magnitude as would be expected from numerical round-off after
two square-root operations. The GNA solution is stable over a large range of clique sizes
(k = 7 through 24), and shows gentle deformation outside this range as cliques become
large enough that the manifold’s non-PPQ curvature becomes significant, or small enough
that sample noise becomes significant.

Figure 7 depicts a GNA immersion of 1000 frames of cropped facial images from a
video. The data is almost certainly not manifold, but many researchers have noted that
it immerses well in R3. The data has a fairly subtle boundary structure with what look
like 1D tendrils, because the face exercises its extreme degrees of freedom separately. The
data may be a fair sample of the density on the face manifold, but it not a fair sample of the
geometry of the manifold itself. This is a chronic problem for NLDR, because other than



isometry constraints at their shared root, the data offers no information for coordinating
the intrinsic degrees of freedom of two tendrils. Nonetheless, the GNA coordinates do
organize the images roughly by head rotation, head illumination, and expression at the
mouth. The figure shows synthetic image sequences corresponding to immersion-space
trajectories along those axes. The images are synthesized by using the out-of-sample
extension when the R3 control point is near immersed data points, and gaussian averaging
when the control point is in open space.

5 Discussion
This paper developed a local principle for recovering maximally isometric parameteriza-
tions of curved manifolds from finite sampling. The local phase of GNA extends NLDR
by opening up a significant class of curved data manifolds whose exact isometry can be
recovered from samples. The global phase brings to NLDR a globally optimized piece-
wise generalization of row-space PCA, along with its guarantee of balanced error and its
facility for data denoising, updating, and mappings of new data points. In this regard
it offers most of the functionality of linear subspace methods, and it is easy to envision
some subset of the methods described above being plugged directly into existing signal
processing pipelines.

Global coordination takes O(Nkd + Mkd2) time using the thin eigenvalue decompo-
sition (EVD). With GNA one can have fewer but larger cliques, such that M � N. The
quadric parameterization phase takes O(M(kDd2 +d4)) time. In general, the dominating
cost of graph-based NLDR is that of the graph itself, which takes O(MN(D+ logN)) time
to construct using direct methods, approximations may offer substantial improvements.

Like all NLDR methods, GNA assumes a reasonable prior estimate of the dimension-
ality and clique size of a data set. The literature surrounding dimensionality estimation
is quite sophisticated (see [13, 14, 17, 21]), but all methods depend on guesses about
clique size or neighborhood scale. Of course, the intrinsic dimension may be smaller
than the minimal dimension d allowing an embedding or isometric embedding in Rd . For
signal-processing applications, preserving local isometry is probably more important than
preserving global topology, but for data visualizations, topologically correct embeddings
may turn out to be more useful than isometric immersions. This points to an interesting
trade-off between topological and metric constraints that has yet to be characterized.

References
[1] Mukund Balasubramanian and Eric L. Schwartz. The IsoMap algorithm and topo-

logical stability. Science, 295(5552):7, January 2002.

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. volume 14 of Advances in Neural Information Pro-
cessing Systems, 2002.

[3] Y. Bengio, J.F. Paiement, and P. Vincent. Out-of-sample extensions for LLE,
Isomap, MDS, eigenmaps, and spectral clustering. In Advances in Neural Infor-
mation Processing Systems, volume 15, 2003.

[4] Matthew Brand. Charting a manifold. In Advances in Neural Information Processing
Systems, volume 15, 2003.



[5] H.Y. Chen, I.K. Lee, S. Leopoldseder, H. Pottmann, T. Randrup, and J. Wallner. On
surface approximation using developable surfaces. Graphical Models and Image
Processing, 61:110–124, 1999.

[6] Fan R.K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference
Series in Mathematics. American Mathematical Society, 1997.

[7] Manfredo Perdigao do Carmo. Riemannian Geometry. Birkhauser, 1992.

[8] David L. Donoho and Carrie Grimes. Hessian eigenmaps. Proceedings, National
Academy of Sciences, 2003.

[9] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematics Journal,
23:298–305, 1973.

[10] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory. Czech. Math. Journal, 25:619–633, 1975.

[11] Gene Golub and Charles van Loan. Matrix Computations. Johns Hopkins, third
edition, 1996.

[12] J. Ham, D.D. Lee, S. Mika, and B. SchÃ¶lkopf. A kernel view of the dimensionality
reduction of manifolds. In Proc. ICML04, 2004.

[13] D.R. Hundley and M.J. Kirby. Estimation of topological dimension. In Proc. Intl.
Conf. on Data Mining. SIAM, 2003.

[14] B. Kegl. Intrinsic dimension estimation using packing numbers. In Advances in
Neural Information Processing Systems, volume 15. MIT Press, 2003.

[15] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by lo-
cally linear embedding. Science, 290:2323–2326, December 22 2000.

[16] X. Senlin and N. Yilong. Submanifolds of product riemannian manifold. Acta
Mathematica Scientia, 20(B):213–218, 2000.

[17] J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The fastest mixing markov process on a
graph and a connection to a maximum variance unfolding problem. SIAM Review,
2004. Submitted.

[18] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319–2323, De-
cember 22 2000.

[19] W.T. Tutte. Convex representations of graphs. Proc. London Mathematical Society,
10:304–320, 1960.

[20] W.T. Tutte. How to draw a graph. Proc. London Mathematical Society, 13:743–768,
1963.

[21] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In Proc. 21st ICML, 2004.

[22] Z. Zhang and H. Zha. Nonlinear dimension reduction via local tangent space align-
ment. In Proc., Conf. on Intelligent Data Engineering and Automated Learning,
number 2690 in Lecture Notes on Computer Science, pages 477–481. Springer-
Verlag, 2003.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2004-134.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16


