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Abstract

This paper examines the properties of a recently introduced 3-D dual-tree discrete wavelet trans-
form (DDWT) for video coding. The 3-D DDWT is an attractive video representation because it
isolates motion along different directions in separate sub bands. However, it is an over complete
transform with 8:1 redundancy. We examine the effectiveness of the iterative projective-based
noise-shaping scheme proposed by Kingsbury [3] on reducing the number of coefficients. We
also investigate the correlation between sub bands at the same spatial/temporal location, both in
the significance map and in actual coefficient value.
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ABSTRACT 

 
This paper examines the properties of a recently 
introduced 3-D dual-tree discrete wavelet transform 
(DDWT) for video coding. The 3-D DDWT is an 
attractive video representation because it isolates motion 
along different directions in separate subbands. However, 
it is an overcomplete transform with 8:1 redundancy. We 
examine the effectiveness of the iterative projective-based 
noise shaping scheme proposed by Kingsbury [3] on 
reducing the number of coefficients. We also investigate 
the correlation between subbands at the same 
spatial/temporal location, both in the significance map and 
in actual coefficient value.  
 

1. INTRODUCTION 
 
The standard separable discrete wavelet transform (DWT) 
provides a multi-resolution representation of a signal. The 
DWT can be used for a variety of applications such as 
denoising, restoration and enhancement, and compression. 
Several recently proposed DWT-based video coders have 
achieved coding efficiency similar to or better than block-
based hybrid video coders [1]. In addition, such coders 
provide a scalable representation of the video in spatial 
resolution, temporal resolution and quality. However, the 
multidimensional DWT mixes orientations in its 
subbands, which can lead to checkerboard artifacts at the 
low bit rate range.  

An important recent development in wavelet-related 
research is the design and implementation of 2-D 
multiscale transforms that represent edges more efficiently 
than does the DWT. Kingsbury’s complex dual-tree 
wavelet transform (DT-CWT) is an outstanding example 
[2]. The DT-CWT is an overcomplete transform with 
limited redundancy ( :1 for m-dimensional signals). 
This transform has good directional selectivity and its 
subband responses are approximately shift-invariant. The 
2-D DT-CWT has given superior results for image 
processing applications compared to the DWT [2,3]. 
Recently, Selesnick and Sendur introduced a 3-D version 
of the dual-tree wavelet transform and showed that it has 

superior motion selectivity [4]. In this paper, we explore 
the suitability of the 3-D DDWT for video coding. 
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Fig.1 Isosurfaces of a typical 3-D DWT (left) and a 
typical 3-D DDWT (right). For the 3-D DDWT, each 
subband corresponds to motion in a specific direction.  
 

We start by briefly introducing the 3-D DDWT and 
its properties for video representation. Section 3 describes 
how to select significant coefficients for video coding. 
Section 4 investigates the correlation between bases at the 
same spatial/temporal location for both the significance 
map and the actual coefficients. The final section 
summarizes our work and discusses options for video 
coding using 3-D DDWT. 
 

2.  3-D DUAL-TREE WAVELET TRANSFORM 
 
The design and the motion-selectivity of 3-D dual-tree 
complex wavelet transform are described in [4]. A 
Daubechies-like algorithm for the construction of Hilbert 
pairs of short orthonormal (and biorthogonal) wavelet 
bases yields pairs of bases, which can be used to 
efficiently implement the motion-selective wavelet 
transform [5].  

Figure 1 illustrates the difference between the 
standard 3-D DWT and the 3-D DDWT. The figure 
depicts the wavelets (i.e. the basis functions) associated 
with the 3-D DWT and the 3-D DDWT respectively. As 
illustrated, the 3-D DWT mixes different orientations in 
one wavelet basis, but the 3-D DDWT is free of this 
effect. The 3-D DDWT has many more subbands than the 



3-D DWT (28 high subbands instead of 7, 4 low subbands 
instead of 1). Only a subset of the high subbands is drawn 
in Fig.1 for DDWT. The 28 high subbands isolate 2-D 
edges with different orientations that are moving in 
different directions. Because of this motion selectivity, the 
3-D DDWT is likely to be substantially more effective for 
the representation of video than the 3-D DWT.  

A core element common to all state-of-the art video 
coders is motion-compensated temporal prediction, which 
is the main contributor to the complexity as well error-
sensitivity of a video encoder. Because the subband 
coefficients associated with the 3-D DDWT directly 
capture moving edges in different directions, it may not be 
necessary to perform motion estimation explicitly. This is 
our primary motivation for exploring the use of 3-D 
DDWT for video coding. 

For all the results in this paper we use the standard 
Daubechies (9, 7)-tap filters in the DWT and the 
description of the DDWT is in [4]. Each transform uses 
three levels of wavelet decomposition. All results are 
tested on two sequences. “Foreman (QCIF)” and “Mobile-
Calendar (CIF)”. 

 
3.  ITERATIVE SELECTION OF COEFFICIENTS 

 
The major challenge to apply the 3-D complex DDWT for 
video coding is it is an overcomplete transform with 8:1 
redundancy. In our current study, we chose to retain only 
the real parts of the wavelet coefficients, which can still 
lead to perfect reconstruction, while retaining the motion 
selectivity. This reduces the redundancy to 4:1 [4]. 

An overcomplete transform is not necessarily 
ineffective for coding, because  a redundant set provides 
flexibility in choosing which basis functions to use in 
representing a signal. Even though the transform itself is 
redundant, the critical coefficients that must be retained to 
represent a video signal accurately can be smaller than 
that obtained with standard non-redundant transform. In 
addition, motion-selective oriented basis functions are 
likely to lead to between visual quality especially at lower 
bit rates. The matching pursuit algorithm is a well-known 
technique for video coding with the overcomplete 
representations [6]. With matching pursuit, larger 
coefficients are chosen iteratively to represent a signal, 
but once the largest coefficient is chosen from the 
remaining ones, its associated basis is deleted from the set 
of bases to be considered in the following iterations. 
Kingsbury proposed an iterative projection-based noise 
shaping (NS) scheme [3], which modifies previously 
chosen large coefficients to compensate for the loss of 
small coefficients.  It was shown that noise shaping 
applied to 2-D DT-CWT can yield a more compact set of 
coefficients than from the 2-D DWT.  In this section, we 
verify that NS is also effective for the 3-D DDWT.   

(a) Foreman (QCIF) 

(b) Mobile-Calendar (CIF) 
 
Fig. 2 PSNR (dB) vs. number of non-zero coefficients for 
the DDWT using noise shaping (DDWT_NS, upper 
curve), the DWT (middle curve), and the DDWT without 
noise shaping (lower curve). 
 

Figure 2 compares the reconstruction quality (in 
terms of PSNR) using the same number of retained 
coefficients with DWT, DDWT with noise shaping 
(DDWT_NS) and DDWT without noise shaping 
(DDWT_w/o_NS). For a given number of coefficients to 
retain, N, the results for DWT and DDWT_w/o_NS are 
obtained by simply choosing the N largest ones from the 
original coefficients. With DDWT_NS, the coefficients 
are obtained by running the iterative projection algorithm 
with a preset initial threshold, and gradually reducing it 
until the number of remaining coefficients reaches N.  
Figure 2 shows that although the raw number of 
coefficients with 3-D DDWT is 4 times more than DWT, 
this number can be reduced substantially by noise 
shaping. In fact, with the same number of retained 
coefficients, DDWT_NS yields higher PSNR than DWT. 
For “foreman”, 3-D DDWT_NS has a slightly higher 
PSNR than the DWT (0.3~0.7 dB), and is 4~6 dB better 
than DDWT_w/o_NS. For “Mobile-Calendar”, the 
DDWT_NS is 1.5~3.4 dB better than the DWT.  



4. CORRELATION BETWEEN BASES 
4.1. Correlation in Significant Maps 
Figure 2 shows that with DDWT_NS, we can use fewer 
coefficients to reach a desired reconstruction quality than 
DWT. However, this does not necessarily mean that 
DDWT_NS will require fewer bits. This is because 
DDWT coefficients are spread over more subbands than 
DWT, and specifying the location of a DDWT coefficient 
may require more bits than specifying the location of a 
DWT coefficient.  The success of a wavelet-based coder 
critically depends on whether the location information can 
be coded efficiently.  

We hypothesize that although 3-D DDWT has many 
more subbands, only a few subbands have significant 
energy for an object feature. Specifically, an oriented edge 
moving in a particular direction is likely to generate 
significant coefficients only in the subbands with the same 
or adjacent spatial orientation and motion pattern. On the 
other hand, with the 3-D DWT, a moving object in an 
arbitrary direction that are not characterized by any 
specific wavelet basis will likely contribute to many small 
coefficients in all subbands.  To validate this hypothesis, 
we compute the entropy of the vector consisting of the 
significance bits at the same spatial/temporal location 
across 28 high subbands. The significance bit in a 
particular subband is either 0 or 1 depending on whether 
the corresponding coefficient is below or above a chosen 
threshold. This entropy will be close to 28 if there is not 
much correlation between the 28 subbands.  On the other 
hand, if the pattern that describes which basess are 
simultanously significant is highly predictable, the 
entropy should be much lower than 28. Similarly, we 
calculate the entropy of the significance bits across the 7 
high subbands of DWT, and compare it to the maximum 
value of 7.  

Figure 3 compares the vector entropies of significant 
maps associated with  DWT, DDWT_NS and 
DDWT_w/o_NS, for varying thresholds from 128 to 8. 
The results shown here are for the top scale only; other 
scales follow the same trend. We see that, with DDWT, 
even without noise shaping, the vector entropy is much 
lower than 28. Moreover, noise shaping helps reduce the 
entropy further. In contrast, with DWT, the vector entropy 
is close to 7 at some threshold values. Also noteworthy is 
that, at high thresholds, the entropy for DDWT_NS is 
quite close to that for DWT.  
 
4.2. Correlation in coefficient values 
In addition to the correlation among the significance maps 
of all subbands, we also investigate the correlation 
between the actual coefficient values. Strong correlation 
would suggest vector quantization or predictive 
quantization among the subbands. Towards this goal, we 

compute the correlation matrix and variance of the 28 
high subbands. Figure 4 illustrates the correlation matrices 
for the top scale, for both the DDWT_w/o_NS and 
DDWT_NS. We note that the correlation patterns in other 
scales are similar to this top scale. From these correlation 
matrices, we find that only a few subbands have stronger 
correlation, and most other subbands are almost 
independent. After noise shaping, the correlation between 
bases is reduced significantly. A greater number of 
subbands are almost independent from each other. It is 
interesting to note that, for the “Foreman” sequence 
(which has predominantly vertical edges and horizontal 
motion), bands 9-12 are highly correlated before and after 
noise shaping. The wavelets associated with these four 
bands have nearly vertical orientations but all moving in 
the horizontal direction.  

 
(a) Foreman (QCIF) 

(b) 
Mobile-Calendar (CIF) 

 
Fig. 3 The vector entropy of significant maps using the 3-
D DWT (the lowest curve), the DDWT_NS (the middle 
curve) and the DDWT_w/o_NS (the upper curve), for the 
top scale. 
 

Figure 5 illustrates the energy distribution among the 
28 subbands for the top scale with and without noise 
shaping. The energy distribution pattern depends on the 
edge and motion patterns in the underlying sequence. For 
example, the energy is more evenly distributed between 
different subbands with “Mobile-Calendar”. Furthermore, 
noise shaping helps to concentrate the energy into fewer 
subbands. 



 
(a) Foreman(QCIF) 

 
(b)  Mobile-Calendar (CIF) 

 
Fig. 4 The correlation matrices of the 28 subbands of 3-D 
DDWT_w/o_NS (left) and DDWT_NS (right). The 
grayscale is logrithmically related to the absolute value of 
the correlation. The brighter colors represent higher 
correlation. 
 

5. CONCLUSION 
 
We demonstrated that 3-D DDWT has attractive 
properties for video representation. Although the 3-D 
DDWT is an overcomplete transform, the raw number of 
coefficients can be reduced substantially by applying 
noise shaping. The fact that noise shaping can reduce the 
number of coefficients to below that required by DWT 
(for the same video quality) is very encouraging. The 
vector entropy study validates our hypothesis that only a 
few bases have significant energy for an object feature. 
The relatively low vector entropy suggests that the 
whereabouts of significant coefficients may be coded 
efficiently by applying vector Huffman coding to the 
significance bits across subbands. The fact that coefficient 
values do not have strong correlation among the 
subbands, on the other hand, indicates that the benefit 
from vector coding the magnitude bits across the 
subbands may be limited. 

In terms of future work, the correlation among 
adjacent spatial and temporal coefficients still needs to be 
explored. Context-based arithmetic coding or quadtree 
coding may be used to explore such correlation if exists.  
Finally, with noise shaping, the optimal set of coefficients 
to be retained changes with the target bit rate.  To design a 
scalable video coder, we would like to have a scalable set 
of coefficients so that each additional coefficient offers a 
maximum reduction in distortion without modifying the 

previous coefficients. How to deduce such coefficient sets 
is a challenging open research problem.   

 
(a) Foreman (QCIF) 

 
(b) Mobile-Calendar (CIF) 

 
Fig. 5 The relative energy of 3-D DDWT 28 subbands 
with (the right column in each subband) and without noise 
shaping (the left column). 
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