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Abstract

We introduce a new class of symbol-spreading transforms that are well-suited

for use in error-control coding systems operating in fading channels. These unitary

transforms have the property that they allow for the unambigous determination

of input symbols from just a single correctly received output symbol. The trans-

forms can be represented using factor graphs that allow for “fast” encoding. Our

simulations show that on channels with fading or interference, systems based on

these new transforms can greatly outperform previously proposed systems that use

Walsh-Hadamard transforms.

1 Introduction

The two major complicating factors in achieving reliable wireless communication are the
phenomena of fading and interference between users [1]. To model these phenomena, we
consider the following point-to-point channel model: assume that a transmitter emits a
block of L complex symbols xl[t] at each discrete time t, and that the receiver receives
the corrupted complex numbers yl[t], where

yl[t] = Hl[t]xl[t] + nl[t]. (1)

Here the noise variables nl[t] are taken to be complex variables independently chosen
from a zero-mean complex Gaussian distribution. The complex fading parameters Hl[t]
are also chosen from a probability distribution; we will restrict out attention here to two
different choices for that distribution. For the first choice, the Hl[t] are independently
chosen from a zero-mean complex Gaussian distribution (i.e. a fast-fading Rayleigh
channel model). For the second choice, which we call an “erasures and noise” model,
we take the Hl[t] to be independently chosen to be 0 with probability pe, and 1 with
probability 1− pe. In all cases, we assume that the receiver has perfect knowledge of the
fading parameters (this is the case of “coherent” communication; such knowledge can be
obtained in practice using pilot tones [1]). The transmitter is assumed to not have any
channel state information.

This model is a general one, and the L different sub-channels can actually be thought
of as arising from frequency, spatial (multiple antenna), or temporal diversity. The
erasure model is a highly simplified model of interference; to motivate it, one can imagine
a case where multiple users randomly hop between frequency sub-channels, and have a
good signal as long as there is no clash, but suffer from interference if they choose the
same sub-channel as another user.



1.1 OFDM

Our primary motivation for considering this model is as an effective channel model for
orthogonal frequency division multiplexing (OFDM) systems [2]. OFDM is used in a
variety of state-of-the-art high data-rate wireless systems, including digital video broad-
casting, wireless local area networks (covered by the IEEE 802.11a, 802.11g, and 802.11n
standards), fixed wireless access systems (802.16), and high data-rate, high mobility sys-
tems (802.20). Anticipated fourth generation cellular telephone systems are also expected
to use OFDM.

The basic principle of OFDM is to convert a frequency-selective wide-band chan-
nel into a number (on the order of 50-2000) of parallel narrow-band sub-channels (also
called “sub-carriers” or “tones”) each of which is frequency-nonselective (i.e. non-delay-
dispersive).
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Figure 1: A coded OFDM system using spreading transforms, including both the trans-
mitter and the receiver. The elements inside the dashed box, considered together, form
an effective channel.

A simplified block diagram for a (coded) OFDM system is shown in figure 1. At the
transmitter, data bits are first encoded using an error-correcting code. The resulting
code-words are mapped into complex symbols using some QAM modulation scheme (in
this paper, we only consider QPSK). A block of complex symbols is then spread over
many sub-carriers by a spreading transform. These spreading transforms will be the
main focus of this paper. Finally, an inverse FFT is performed, a cyclic prefix is added,
and a continuous-time signal is created, which is transmitted over the channel.

In the standard receiver for such a system, also shown in figure 1, the received signal is
first processed using an FFT, and the cyclic prefix is stripped out. The resulting complex
symbols are equalized, then a “detector” performs an inverse spreading transform, and
finally, the resulting corrupted complex symbols are fed into a decoder for the error-
correcting code to recover the original data symbols.

One can treat the combination of the inverse FFT at the transmitter, followed by the



channel, followed by the FFT at the receiver (see figure 1) as an effective channel. Doing
so, one obtains the channel model of equation 1, where the L different diversity branches
correspond to L different sub-carriers.

The “equalization” of OFDM systems is extremely simple, as each sub-channel is
effectively narrow-band, and thus the signal received for this tone needs only be divided
by the complex number Hl[t].

1.2 Spreading Transforms

Unfortunately, because each sub-channel in an OFDM system is narrowband, OFDM
by itself does not give any frequency diversity–if a sub-carrier is in a fading dip or an
erasure, when Hl[t] has a small magnitude, then its signal-to-noise-ratio (SNR) will be
bad, and the probability of error in decoding the corresponding received symbol will be
high. Of course, the error-correcting code attached to the OFDM system is there to help
deal with this problem, but by itself (i.e. without a good spreading transform to obtain
diversity over the sub-carriers), it cannot effectively deal with fading. The problem is
that to achieve a high spectral efficiency without too much complexity in the modulation
scheme, one often needs to use high-rate codes, which are not capable of dealing with
large numbers of erasures.

Therefore, an approach known as “multi-carrier CDMA” or “spread OFDM” was
developed over the last decade [2, 3, 4]. In this approach, the block (over different sub-
carriers) of mapped QPSK symbols ul[t] is first multiplied by an L by L Walsh-Hadamard
transform (WHT) matrix W L, to obtain the “spread” block of complex symbols xl[t]:

xl[t] =
L
∑

m=1

W L

lm
um[t]. (2)

This multiplication spreads the information for each symbol over all available tones. Since
the number of symbols is the same as the number of tones, no additional redundancy
is added. The idea is to exploit the frequency diversity over the sub-carriers, or viewed
in another way, to “soften” the channel that the error-correcting code sees. We note,
however, that spreading transforms are neither necessary nor helpful when there is no
fading.

There are two major problems with receivers for coded OFDM systems that use
Walsh-Hadamard spreading transforms. The first is associated with commonly-used “lin-
ear” detectors for the inverse WHT, which simply multiply the received signal with the
inverse of WHT matrix after the equalization of each tone, but before demodulation and
decoding. Unfortunately, this approach leads to noise enhancement, as the noise from
the “bad” tones (with low SNR) are amplified by the equalization, and then distributed
over all tones. This problem can in principle be solved by replacing the linear detectors
with maximum-likelihood detectors, but the complexity of maximum-likelihood detectors
limits their use to very small WHT matrices.

A second important problem is connected to the WHT matrices themselves. Recall
that an N by N WHT matrix W N , where N is a power of two, is formed as a Kronecker
product of 2 by 2 WHT matrices W 2, where

W 2 =
1√
2

(

1 1
−1 1

)

. (3)



Thus, W 4 = W 2 ⊗ W 2, W 8 = W 2 ⊗ W 2 ⊗ W 2, etc., and for example

W 4 =
1

2











1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1











. (4)

WHT matrices have the nice property of unitarity, which implies that the distance
between two vectors of symbols is not changed under a WHT transform. There also
exist “fast” algorithms for doing Walsh-Hadamard transforms. However, there is no
strong a priori argument why Walsh-Hadamard transforms should be used as spreading
transforms instead of other transforms that share these properties. In fact an important
objective of this paper is to show that they should not be used, and to suggest another
set of transforms that perform better.

The key problem with WHT matrices is revealed in conditions when there are many
sub-carrier erasures (which can be caused either by fading dips or interference). Suppose,
to take a very simple illustrative example, that we use a 2 by 2 WHT matrix, and the
first output symbol has been erased, while the second output symbol is detected (to
high precision) as a 0.0. Suppose further that the input symbols have been mapped to
QPSK constellation points at (±1 ± i)/

√
2. Unfortunately, from the single output, the

two inputs symbols cannot be resolved. We can infer that they must be equal, so that
their difference is zero, but we cannot determine their values.

The lesson of this simple example extends to larger Walsh-Hadamard transforms. In
general, from a small number of surviving output symbols, one has no way of disam-
biguating the possible input symbols.

To deal with this problem, at least in the case of 2 by 2 transforms, an interesting
suggestion was recently made by Ojard [5]. He suggested using an asymmetric transform
of the form

V =
1√
5

(

2 1
−1 2

)

. (5)

Now again suppose that the first output is erased, but the second output is received to
high precision–say for example, that it is received as a (1 + 3i)/

√
10. In this case it is

possible to infer the value of the pair of inputs–the only possibility that would give that
value for the second output is when the first input equals (1 − i)/

√
2 and the second

input equals (1+ i)/
√

2. More generally, every pair of inputs maps to a different output,
for both the first and the second output, so that even if only a single output is received
correctly, the inputs can be recovered unambiguously.

Ojard’s idea was developed independently to the related idea of “permutation codes”
recently proposed by Tavildar and Viswanath, primarily in the context of MIMO systems
[6]. Tavildar and Viswanath’s interesting work approaches the problem from a different
perspective, but they also limit themselves to “codes” that amount in our context to
transforms using only two sub-carriers.

The goal of our work is to give an explicit construction for disambiguating unitary
spreading transforms (DUSTs) for larger L. We will construct these transforms using
factor graphs that can be used to give a “fast” encoding. We will also show by simulations
that these transforms indeed give an important performance advantage.



2 Factor Graphs for DUSTs

Fast Fourier transforms and fast Walsh-Hadamard transforms can be constructed using
“normal” factor graphs [7, 8]. The basic building blocks for these factor graphs are “but-
terfly” factor nodes [8] with two input and two output variables. Such nodes are drawn
using a square with four constants (known as “twiddle factors”) inside, representing the
two constraints on the input and output variables (see figure 2).
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Figure 2: A prototypical butterfly factor node, which implements the two constraints
y0 = Ax0 + Bx1 and y1 = Cx0 + Dx1.

To construct factor graphs for our DUSTs, we entirely copy the “wiring” for a standard
FFT or fast WHT, and just modify the twiddle factors in the butterfly factor nodes. An
example factor graph for an 8 by 8 DUST is shown in figure 3. Our construction assumes
that the DUST has a length N = 2I, where I is an integer greater than or equal to
one. We arrange the butterfly factor nodes in I stacks, and for the ith stack, the twiddle
factors are chosen to be A = D = 2i, B = 1, C = −1. For convenience, we create a
final stack of normalization factor nodes to the right of the butterfly factor nodes. The
normalization constant Z, which is necessary to ensure that the transform is unitary, is

given by Z =
√

∑

2I−1

i=0
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Figure 3: A factor graph for an 8 by 8 DUST implementing the transform xl[t] =
∑

8

m=1
V 8

lm
um[t].

These factor graphs provide a fast encoding method for DUSTs. The inputs um[t]
enter on the right, and then one processes one stack of butterfly nodes at a time, followed
by the stack of normalization nodes, to finally obtain the outputs xl[t], using a total
number of computations of order L log L.

It is easy to compute the DUST matrix corresponding to these factor graphs. The
output results obtained when the ith input in the DUST factor graph is a 1 and all other



inputs are zeros corresponds to the ith row of the DUST matrix. For the 2 by 2 case, we
just recover Ojard’s matrix. For the 4 by 4 case, we obtain the matrix

V =
1√
85











8 2 4 1
−2 8 −1 4
−4 −1 8 2
1 −4 −2 8











. (6)

It is not hard to verify that the transpose of a DUST matrix is equal to its inverse,
which means that the DUST matrices are unitary. However, the most attractive feature
of DUSTs is their disambiguating property. Given L input QPSK symbols, each of the L
outputs can take on 4L distinct values, one for each possible combination of inputs. This
means that if even a single output is received with perfect reliability, all the inputs can
be recovered.

For QPSK inputs, the constellation of possible values for each output will form a 2L

by 2L square lattice grid. The mapping of inputs to constellation points for each output
will be different from each other. Inputs that map to neighboring constellation points
for one output will map to distant constellation points for other outputs. As emphasized
by Tavildar and Viswanath, this is precisely the property desired in a good spreading
transform [6]. To illustrate these facts, we show in figure 4 the constellations of possible
output values for the 2 by 2 case, with QPSK inputs.
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Figure 4: The constellations of possible output values for the two outputs of a 2 by 2
DUST matrix, with QPSK inputs α = (1+ i)/

√
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2. The labels on each constellation point are the values of the two inputs
that give that output. The positions of the constellation points are +3/

√
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3 Simulation Results

3.1 Set-up

To simulate the DUSTs, in combination with error-correcting codes, we use the following
set-up, illustrated by the factor graph shown in figure 5. We first encode k information
bits, using an [N, k] block error-correcting code, into a codeword of length N . We then
map the resulting codewords onto L = N/2 QPSK symbols. The resulting block of L
QPSK symbols is partitioned into P sub-blocks of length M = 2I, where I is a non-
negative integer, and then each of these sub-blocks are transformed using a M by M



spreading transform (WHT or DUST). The resulting L complex symbols are concatenated
and transmitted over the channel which fades them and adds noise as described by
equation 1.

Error-
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Figure 5: A factor graph that describes both the transmitter and receiver of our spread
coding system. This particular factor graph corresponds to a [N = 16, k = 11] code, using
2 by 2 spreading transforms. The dashed boxes indicate the exact detectors described in
the text; the inputs to a detector are the complex symbols on the right, and the outputs
are a posteriori likelihood values for codeword bits exiting on the left.

Our receivers work as follows. For each M by M WHT or DUST, we use a detector
which computes the exact a posteriori marginal likelihoods of the 2M corresponding
codeword bits, given the received complex symbols. This is done by summing over the
likelihoods (given the received complex symbols) of every possible configuration of the 2M
codeword bits. This detector is thus also a demodulator and an equalizer, and is denoted
by the dashed boxes in figure 5. The N marginal likelihoods that are output by the
detector are then fed into a soft-input soft-decision decoder for the error-correcting code.
Of course, using such an exact detector is only possible if M is small. We emphasize,
however, that our receiver is not an optimal receiver even when the detector and error-
correcting code decoder are separately optimal.

3.2 Results

The first set of simulations used a [N = 16, k = 11] extended Hamming code. One
advantage of using this code is that we can compare our receiver to an overall optimal
receiver, which computes the marginal probabilities of the codeword bits by summing
over the probabilities of each of the 211 = 2048 possible codewords.

In figure 6, we show our results, for the fast-fading Rayleigh channel, and using
an overall-optimal decoder, for both WHTs and DUSTs. The DUSTs completely out-
perform the WHTs. Notice that even the 2 by 2 DUST out-performs the 8 by 8 WHT.
Note also that the advantage of using an 8 by 8 DUST compared to a 4 by 4 DUST is
not significant.
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Figure 6: Performance of spreading transforms combined with [16,11,4] extended Ham-
ming code on Rayleigh fading channel. The performance of practical decoders is given
by the dashed lines. The definition of “practical” and “optimal” decoding is given in the
main text.

In this figure, we also plot, for the 2 by 2 and the 4 by 4 DUSTs, the performance of
“practical” receivers that function as described above, by separately doing exact detection
of the DUSTs, followed by bit-optimal decoding of the extended Hamming code. Note
that there is very little performance loss compared to an overall-optimal receiver. An
exact 4 by 4 DUST detector must sum over 28 = 256 possible combinations of codeword
bits, so it is within the realm of practical systems, but an exact 8 by 8 DUST detector
would need to sum over 216 = 65536 possibilities, and so is not very realistic.

In figure 7, we switch to the ’erasures and noise’ channel, and use an [N = 3584, k =
3140] LDPC code obtained from MacKay’s database [9]. We used a high rate code
because, for a weak code, the importance of the spreading transform is relatively greater.
We use an exact detector as described above for the DUST or WHT transforms, and a
standard sum-product decoder for the LDPC code, with 100 iterations.

As the figure shows, the disambiguating property of the DUST allows the error-
correcting decoder to function, whereas the WHT can sometimes perform badly no matter
how low the noise becomes. An intuitive explanation for the behavior at low noise is that
a DUST detector will only fail if all the M inputs are erased. Thus, a DUST detector
effectively turns an erasure rate of pe into an erasure rate of pM

e
. Because a single correctly

received output for a WHT is not normally useful, the error-correcting code attached to
a WHT must deal with a much higher effective erasure rate.

As can be seen in figure 8, the performance difference between systems using WHTs
and DUSTs is not so great on a Rayleigh channel, but is still noticeable. For both the
Rayleigh and the “erasures and noise” channels, we are still far from the Shannon limit,
even when we use DUSTs.
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Figure 7: Performance of spreading transforms combined with an [N = 3584, k = 3140]
LDPC code in “noise and erasures” channel. Dashed curves are for pe = 0.1, and solid
curves are for pe = 0.3. Note that systems based on DUSTs function well at low enough
noise, but those based on WHTs can fail completely. The Shannon limit (with no re-
striction on the signalling) for pe = 0.1 is 1.66 dB, and for pe = 0.3 it is 2.70 dB.

4 Discussion

We have restricted ourselves in the simulations to exact detectors, which naturally limits
us to small DUSTs. Thus the fact that DUSTs have fast encoders for larger sizes be-
comes largely irrelevant. However, the factor graph representation of DUSTs gives some
hope that good approximate detectors for larger DUSTs can be constructed. On the
other hand, it only really makes sense to pursue this path if larger DUSTs significantly
outperform the 4 by 4 DUSTs used here–the results shown in figure 6 cast some doubt
on this notion.
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