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Abstract

We describe a practical method for distributed com-
pression of q-ary sources using multi-level serially-
concatenated-accumulate codes. Our approach works
well at high compression rates, and allows for graceful and
incremental rate-adaptivity. Simulations show that the
compression efficiency is near the information-theoretic
limits for correlations between sources that obey a Gaus-
sian or Laplacian distribution.

I Introduction

In 1973, Slepian and Wolf proved that correlated sources
can be compressed without loss using just as few bits,
whether or not the encoders of the separate sources are
permitted to communicate [1]. Wyner and Ziv soon
thereafter extended the Slepian-Wolf theorem to the case
of lossy compression [2]. A first clue about how to con-
struct a practical system that achieved these surprising
results was provided by Wyner [3], who suggested that
the encoders should transmit syndrome bits using error-
correcting channel codes. In Wyner’s approach, a decoder
would decode a particular source X , using the syndrome
bits provided by the encoder of X combined with the
side information about a correlated source Y provided by
another encoder.

There followed a period of roughly twenty-five years
during which few if any attempts were made to con-
struct practical systems that achieved the performance
promised by Slepian-Wolf and Wyner-Ziv [4]. Recently,
however, a variety of interesting proposals have been
made, see e.g. [5, 6], and references therein. One reason
for the new interest in practical distributed source cod-
ing schemes has been the generally increasing attention
given to distributed sensor networks. Another important
motivation is the potential of systems that borrow the
idea of syndrome-based encoding and decoding to com-
press video in a way that shifts the complexity burden
from the encoder to the decoder [7, 8].

In our view, a good distributed source coding method
should satisfy the following requirements. First, it should
be capable of compressing integer-valued sources with
wide dynamic range. (Real-valued sources will normally
quantized to integer values in any case.) Second, it should
work well at very high compression ratios. Third, it

should be gracefully rate-adaptive. That is, it should
be possible to use different rate codes as the source cor-
relations change, with minimal complexity, and ideally
without even any need to explicitly transmit which code
is being used. Fourth, it should be incremental, in the
sense that one can send some bits to the decoder, and
then if the decoder needs more bits, send those addi-
tional bits without wasting any information previously
sent. Fifth, it should achieve compression efficiencies near
the information-theoretic bounds. Finally, the complex-
ity should scale linearly or nearly linearly with the size of
the sources.

These requirements all arise naturally in video com-
pression applications. For example, because of the large
temporal redundancy, high compression rates are pos-
sible; but the level of redundancy changes constantly
throughout a video stream, so rate-adaptivity is also es-
sential.

We have developed new syndrome-based distributed
source coding methods that satisfy all these require-
ments. They use, in an appropriately modified form,
recently proposed error-correcting channel codes that
we call “serially-concatenated-accumulate” (SCA) codes.
SCA codes generalize the well-known repeat-accumulate
(RA) codes [9], by replacing the repetition codes in RA
codes with other “base codes.” If the new base codes
are products of single parity checks, the SCA code is a
product-accumulate (PA) code [10]. If the new base codes
are extended Hamming codes, the resulting SCA code is
what we call an “extended-Hamming-accumulate” (EHA)
code [11, 12]. Low complexity decoders of PA and EHA
codes have both been shown to perform close to opti-
mally at high rates for channel coding, which make them
promising candidates for syndrome compression methods
that need to operate at high compression rates.

The outline for the rest of the paper is as follows.
In Section II, we will set up more precisely the prob-
lem that we are interested in solving. In Section III, we
describe how bit-level syndrome encoders and decoders
can be constructed using SCA codes. In section IV, we
describe how PA and EHA codes can be conveniently di-
vided and sub-divided into other codes of the same type,
a property that we exploit to obtain graceful and incre-
mental rate-adaptivity. In section V, we describe how
multi-level codes can be constructed using SCA codes,
and how to decode using a multi-stage decoder, to allow
for encoding and decoding of q-ary sources. Finally, in



section VI, we present simulation results that show that
our method gives performance that is quite close to the
information theoretic bounds, at least for Gaussian and
Laplacian probability distributions.

II Problem Set-up

We suppose that the sources Z, Y , X , W , etc., each
consist of n integers ranging over q = 2m values. The
sources are assumed to be statistically correlated, with
a joint probability distribution that has the form of a
Markov chain:

p(z, y, x, w, ...) = p(z)p(y|z)p(x|y)p(w|x).... (1)

One source (say, Z) will be transmitted directly, and
syndrome bits will be sent for each of the other sources.
We can then decode by solving a series of “source coding
with side information” (SCSI) problems. That is, we can
decode the source Y using Z as side information, then
decode X using Y as side information, and so on.

This set-up naturally describes the video compression
problem, where the different sources are the different
frames of the same video. Of course, for that problem, the
encoders have no problem in communicating, but there
are other reasons (e.g. complexity at the encoder and
error-resilience) why one may want to use a syndrome-
based scheme. [7, 8].

Each syndrome encoder needs to make a decision about
how many syndrome bits to send. There are a variety of
different scenarios for how this decision might be made.
In the first scenario, which is the classical scenario for the
SCSI problem, the encoder for X is given access to the
conditional probability p(x|y) (but not samples from Y
itself), and can therefore estimate the entropy H(X |Y ),
and send the appropriate number of bits.

In a second possible scenario, there is a a small feed-
back channel from the decoder telling an encoder whether
it can decode. To exploit such a feedback channel, one
needs to be able to transmit syndrome bits incremen-
tally. The advantages of this scenario are that one does
not need to make accurate estimates of the entropy, and
one can eventually send enough syndrome bits to ensure
successful decoding.

Finally, in a third scenario, the encoders might actu-
ally communicate, and also run a version of the decoder
to ensure that enough syndrome bits are sent. In this
scenario the normal reasons given for using a syndrome-
based approach are not valid (since the encoders commu-
nicate, and there is no complexity savings, even at the
encoder), but on the other hand, the compression per-
formance can be very good, and syndrome-based meth-
ods can potentially out-perform conventional compression
methods. Within the context of this scenario, methods
for text compression using low-density parity check codes
have recently been proposed and shown to have excellent
performance [13].

Throughout, we will assume that the conditional prob-
ability function p(x|y) factors over the integers xi and yi

like

p(x|y) =

n
∏

i=1

p(xi|yi) (2)

The exact form of the distributions p(xi|yi) that we con-
sider will be detailed in section VI.

III Syndromes from SCA Codes

SCA codes are formed by a serial concatenation of a rate-
1 accumulator, an interleaver, and a set of base codes.
We focus here on PA codes, for which the base codes
are product codes constructed from single-parity-check
(SPC) codes, and EHA codes, for which the base codes
are extended Hamming codes.

In this section, we will begin the process of describing
our full system by showing how to construct bit-level syn-
drome encoders and decoders using PA and EHA codes.

A Encoding

To encode, i.e. compress, a source [x1, . . . , xn], we first
apply an inner encoder, which is actually an inverse ac-
cumulator. For now, we assume that the source is binary.
The inverse accumulator simply concatenates the first
source bit with the modulo-2 sum of consecutive pairs
of following source bits. The output of the accumulator
is then interleaved (according to a fixed permutation) and
divided into p blocks. For now, we take the p blocks to
have equal size; we will lift this assumption later. For
PA codes, the blocks are s × t arrays (so that n = pst),
while for EHA codes these blocks have length 2r, (so that
n = p2r).

The syndrome bits are then computed according to
the appropriate base code. For PA codes, the syndrome
bits are computed as the modulo-2 sums of single parity
checks defined using the rows and columns of the arrays.
Since the s + t syndromes corresponding to each array
have total parity zero, exactly one is redundant and does
not need to be sent. Therefore a PA code with an outer
code using p equal-sized s × t arrays gives a compression
ratio (defined as the number of source bits divided by the
number of syndrome bits) of st/(s + t − 1). For EHA
codes, the syndrome bits are computed using the syn-
dromes of the [N = 2r, k = 2r − (r + 1), d = 4] extended
Hamming codes. Therefore an EHA code with an outer
code using p extended Hamming codes of length 2r will
have a compression ratio of 2r/(r + 1).

A factor graph [14] for an SCA code, including the syn-
drome bits, is shown in figure 1. Of course, the number
of syndrome bits used will depend on the base codes–the
SCA code shown in the figure is a toy code that uses three
[N = 3, k = 1, d = 3] repetition codes as base codes. The
encoding operation that we have described starts with
the source bits at the bottom of the factor graph, and
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Figure 1: A factor graph for a syndrome encoder/decoder
using SCA codes.

proceeds deterministically up to the syndrome bits at the
top of the factor graph.

B Decoding

The decoder uses received syndrome bits and the corre-
lated source Y to estimate the original message. Before
decoding, we first compute the values of any redundant
syndrome bits. The decoder then uses a turbo-like al-
gorithm which passes soft extrinsic information between
decoders of the base codes and the accumulator code.

The accumulator code is decoded using the BCJR algo-
rithm, which generates extrinsic information for each bit
for the decoders of the base codes. Side information from
the source Y can be treated just like soft evidence from
the channel in channel coding. This side information is
represented by the “dongles” attached to the source bit
variable nodes in figure 1. We will say more about how
this evidence is generated in section V.

Different algorithms can be used for decoding the base
codes. For EHA codes, we used symbol-MAP decoders of
extended Hamming codes [15] that return soft extrinsic
information. Because the complexity of these decoders
scales with the block-length N of the extended Hamming
code as N log N , very high rate EHA codes can be used
efficiently. For product codes, we followed [10] and used
belief propagation-based decoders.

The over-all decoder uses a turbo-decoding algorithm
to iterate between the decoder of the accumulator code
and the decoders of the base codes. After a fixed num-
ber of turbo iterations were reached, we check whether
a coset codeword (i.e., a word that satisfies all the syn-
drome bits, and all the constraints in the accumulator
code) is reached.

IV Variable-Rate Compression

In this section, we lift our assumption that all the base
codes in the SCA code have equal block-length. By per-
mitting the different base codes in an SCA code to have
different sizes, we will be able to adjust the rate of the
overall code to have nearly any possible desired value.

We first describe the approach using PA codes. Sup-
pose that our PA code has p base codes, and the ith base
code is a product of SPC codes of size si by ti, where si

and ti are both powers of two. That means that the ith
base code contributes si + ti − 1 syndrome bits using the
encoding described in the previous section.

Suppose that we want to send more syndrome bits than
the

∑

i
(si + ti − 1) that are currently being sent. We can

easily do this by “splitting” one of the base codes into
two. For example, if the ith base code is a product code
of size 8 by 8, we can split it into two 4 by 8 product
codes. Incidentally, in our implementations, we always
tried to keep the number of rows and columns in our
product codes as equal as possible.

Many of the syndrome bits for the new, smaller, prod-
uct codes will not need to be transmitted, because they
already have been sent or are redundant. In the exam-
ple just described, the syndrome bits corresponding to
the columns of the 4 by 8 product code need not be sent,
because they can be obtained from the corresponding syn-
drome bits for the 8 by 8 product code. In this example,
the syndrome bits for the rows of one of the new, smaller,
product codes will need to be transmitted, but the syn-
drome bits for the rows of the other smaller code can be
determined using the new syndrome bits sent, in combi-
nation with the syndrome bits that had previously been
sent for the rows of the 8 by 8 product code.

It is not difficult to verify that by splitting the base
codes recursively, we can incrementally vary the number
of syndrome bits sent, without ever wasting any informa-
tion from previously sent syndrome bits.

A similar approach works for EHA codes, based on the
fact that any extended Hamming code can be elegantly
“split” into two smaller extended Hamming codes. Sup-
pose that our EHA code has p base codes, and the ith
base code is an extended Hamming code of block-length
2ri . Therefore, the ith base code will contribute ri + 1
syndrome bits, and the total number of syndrome bits
sent will be

∑

i
(ri + 1).

Now suppose that we want to send more syndrome
bits–the idea is once again to “split” one of the ex-
tended Hamming codes into two smaller extended Ham-
ming codes, which can always be done. For example, sup-
pose that the base code to be split is an [N = 8, k = 4]
extended Hamming code with parity check matrix

H =









1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0









, (3)



and we want to split this code into two [N = 4, k = 1]
extended Hamming codes with parity check matrices

H =





1 1 1 1
1 1 0 0
1 0 1 0



 . (4)

The [N = 8, k = 4] code would provide four syndrome
bits, and we would need six syndrome bits for the two
[N = 4, k = 1] extended Hamming codes. The syndrome
bits for the first row of one of the smaller [N = 4, k = 1]
codes can be obtained from the second row of the parity
check matrix of the [N = 8, k = 4] code. Suppose that
we send the syndrome bits of the second and third row
for that smaller code. Then all the syndrome bits for
the other smaller code can be obtained using some com-
bination of the syndrome bits from the [N = 8, k = 4]
code, and the syndrome bits transmitted for the first
[N = 4, k = 1] code. Thus, if we already transmitted
the syndromes for the [N = 8, k = 4] code, we can ob-
tain all the necessary syndrome bits for the two smaller
codes by sending just two more syndrome bits, and no
syndrome bits will be wasted.

Although we have just explained how to split extended
Hamming codes into two using a small example, the reg-
ular structure of these codes makes it very easy to gener-
alize the example to larger sizes.

To reiterate the essential point of this section: we can
gracefully and incrementally vary the compression ratio
in our approach by recursively splitting the base codes
in the SCA code. A very important point is that the
encoders and the decoder must agree on a pre-determined
splitting schedule. Given such a schedule, the structure
of the code can be directly inferred at the decoder from
the number of transmitted syndrome bits.

V Multilevel Codes for q-ary

Sources

We now lift the assumption that the source is binary, and
consider instead a q-ary source, where q = 2m. To encode
such a source, we will use a multi-level code, with m lev-
els or “bit-planes.” We will decode this multi-level code
using a multi-stage decoder, analogous to the decoders
for block coded modulation multi-level codes pioneered
by Imai and Hirakawa in 1977 [16].

To be more precise, let the q-ary source X consist of n
integers, each ranging from 0 to 2m − 1, and let

Xi = X1

i
X2

i
. . . Xm

i
, Xk

i
∈ {0, 1}

be a binary representation of the ith integer Xi. We
considered a variety of binary representations of the in-
tegers, including the standard binary representation, a
Gray code, and a few other possibilities, but will present
results for the standard representation, because the per-
formance using it was at least as good as that of other
representations.

After converting the source into a set of m bit-planes,
each bit-plane is separately encoded into syndrome bits
using its own binary SCA code.

The decoding proceeds by decoding one bit-plane af-
ter the other. We found by simulation that the minimal
overhead was achieved when one begins with the least
significant bit plane, and then proceeds to the next most
significant bit plane, and so on until one decodes the most
significant bit plane.

Each bit-plane decoder needs, as input, a set of a pri-

ori probabilities for each of the n bits. These a priori

probabilities for xi, the ith bit in X , are computed based
on the conditional probability distribution p(xi|yi), con-
ditioned further on the previously decoded bit-planes of
X . Thus, as bit-planes of X are decoded, the results are
used to help determine the a priori bit probabilities for
subsequent bit-planes. The idea behind these computa-
tions is illustrated in figure 2.

0 1 

0 

1 

0 

1 

Figure 2: An illustration of how the conditional proba-
bility distribution will be partitioned based on previously
decoded bit-planes. For simplicity, we assume here that
the most significant bit is decoded first, followed by the
next most significant bit, and so on. In this example,
the most significant bit is decoded as a one, and the sec-
ond most significant bit is decoded as a zero, so the third
bit’s distribution is in the region near to zero, but to the
right. The a priori probability for a bit to be a zero or
one is obtained by integrating the appropriate part of the
distribution, and normalizing.

VI Simulation Results

We now present simulation results for PA and EHA codes
using synthetic sources. We consider two possible models
for the conditional probability: the Gaussian case, for
which

p(xi|yi) ∝ exp{
(xi − yi)

2

2σ2
}, (5)

and the Laplacian case, for which

p(xi|yi) ∝ exp{λ|xi − yi|}. (6)



The importance of the Gaussian distribution needs no
special explanation, while the Laplacian model provides
a very good fit for many image processing tasks, such as
the distribution of the residuals of two consecutive frames
in a video sequence. Since we only consider q-ary source
symbols, we sample the Gaussian and Laplacian distribu-
tions on the grid of integers between 0 and q−1. In all our
simulations we let q = 256. We set all the symbols in the
side information sequence y to equal 128 and hence the
source symbols xi are generated from the corresponding
discrete distribution centered around 128. This set-up
is not as artificial as it may appear; in image or video
compression, one typically compresses the residual error
compared with a predicted value, and the residual error
will have zero mean, which we have simply re-centered to
128 for convenience.

In the simulations we use the incremental rate adap-
tivity feature of our system as discussed in secton IV. For
system based on PA codes, we used a splitting schedule
that first split the columns (from left to right) and then
the rows from (top to bottom) at any given level. For
the EHA codes, we always split the first available largest
block into two smaller blocks of half the size. While the
PA codes can send syndromes in increments of one, the
EHA codes require slightly larger increments.

The overall protocol used was to send syndrome bits
incrementally until the decoder was able to successfully
decode to a coset codeword. In our experiments, the de-
coder never failed by decoding to an incorrect coset code-
word, but instead would fail by reaching a word that did
not satisfy all the constraints. If decoding failed, more
syndrome bits were sent, until decoding ultimately suc-
ceeded.

The simulations were performed on synthetic sources
of length size 4096 (4K) and 16384 (16K). The number
of turbo iterations for the EHA codes was set to 30 while
that of the PA codes was set to 20. The number of trials
for sources of length 4K was chosen to be 1000, and for
length 16K it was 100. For all the figures shown here, the
error-bars will be smaller than the size of points used to
plot the data.

In figure 3, we plot, for both the system that uses PA
codes and the one that uses EHA codes, the overall num-
ber of syndrome bits used in our method, compared with
the computed conditional entropy H(X |Y ), which sets a
theoretical lower bound. In this plot, we use sources of
length 4K and a Gaussian distribution. Note that both
systems closely approach the entropic limit, although the
system based on EHA codes performs somewhat better
than that based on PA codes.

Figure 4 plots the same data, along with the data
for the sources of 16K, in a different way, as the “over-
head” required by our method. Note that the overhead
required by the system that uses EHA codes is roughly
2% over a wide range of the standard deviation σ, and it
is not strongly dependent on the blocklength. The non-
monotonic relation between the overhead and the stan-

dard deviation for the system based on PA codes is prob-
ably a result of complicated details concerning how the
entropy is shared between different bitplanes, and the rel-
ative effectiveness of PA codes at different rates.

Figure 5 helps fill in some of these details and explain
why our systems perform so well. We plot the number of
syndrome bits used and the conditional entropy for each
bit-plane in our system when σ = 1. For bitplanes with
conditional entropy close to 1 the overhead is close to zero
since we are sending a number of syndrome bits equal to
the number of source bits. This happens for the few least
significant bitplanes which are decoded first in our simu-
lations. When the conditional entropy is very near zero
the source can be recovered from their a priori probabil-
ities wihout sending any syndromes. This is the case for
the few most significant bitplanes, which we decode last.
Finally, for the intermediate bit planes EHA codes were
observed to incur lower overhead than the PA codes.

Figure 6 compares the overhead incurred with Lapla-
cian and Gaussian models. We note that the Laplacian
model requires somewhat higher overhead than the Gaus-
sian model, although the overall overhead is still quite
small. This can be explained by noting that the Lapla-
cian distribution has more bit planes with intermediate
values of the conditional entropy than the Gaussian model
(cf. figure 5).
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