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Abstract
In this paper we present an extension to the Non-Negative Matrix Factorization algorithm
which is capable of identifying components with temporal structure. We demonstrate the
use of this algorithm in the magnitude spectrum domain, where we employ it to perform
extraction of multiple sound objects from a single channel auditory scene.
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Abstract. In this paper we present an extension to the Non-Negative
Matrix Factorization algorithm which is capable of identifying compo-
nents with temporal structure. We demonstrate the use of this algorithm
in the magnitude spectrum domain, where we employ it to perform ex-
traction of multiple sound objects from a single channel auditory scene.

1 Introduction

Non-Negative Matrix Factorization (NMF), was introduced as a concept inde-
pendently by Paatero (1997) as the Positive Matrix Factorization, and by Lee
and Seung (1999) who also proposed some very efficient algorithms for its com-
putation. Since its inception NMF has been applied successfully to a variety of
problems despite a hazy statistical underpinning. In this paper we will introduce
an extension of NMF for time series, which is useful for problems akin to source
separation for single channel inputs.

2 Non-negative Matrix Factorization

The original formulation of NMF is defined as follows. Starting with a non-
negative M ×N matrix V ∈ R

≥0,M×N the goal is to approximate it as a product
of two non-negative matrices W ∈ R

≥0,M×R and H ∈ R
≥0,R×N where R ≤ M ,

such that we minimize the error of reconstruction of V by W · H. The success
of the reconstruction can be measured using a variety of cost functions, in this
paper we will use a cost function introduced by Lee and Seung (1999):

D =
∥
∥
∥
∥
V ⊗ ln(

V
W ·H ) − V + W · H

∥
∥
∥
∥

F

(1)

where ‖ ·‖F is the Frobenius norm and ⊗ is the Hadamard product (an element-
wise multiplication); the division is also element-wise. Lee and Seung (2000) also
introduced an efficient multiplicative update algorithm to optimize this function
without the need for constraints to enforce non-negativity:

H = H⊗ W� · V
W·H

W� · 1 , W = W ⊗
V

W·H · H�
1 · H� (2)
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where 1 is a M×N matrix with all its elements set to unity, and the divisions are
again element-wise. The variable R corresponds to the number of basis functions
to extract. It is usually set to a small number so that NMF results into a low-rank
approximation.

2.1 NMF for Sound Object Extraction

It has been shown (Casey and Westner 2000, Smaragdis 2001) that sequentially
applying PCA and ICA on magnitude short-time spectra results in decompo-
sitions which permits extraction of multiple simple sounds from single-channel
inputs. A similar NMF formulation is developed here. Consider a sound scene
s(t), and its short-time Fourier transform packed into a M × N matrix:

F = DFT






s(t1) s(t2) s(tN )
...

... · · · ...
s(t1 + M − 1) s(t2 + M − 1) s(tN + M − 1)




 (3)

where M is the DFT size and N the overall number of frames computed1. From
the matrix F ∈ R

M×N we can extract the magnitude of the transform V =
|F|,V ∈ R

≥0,M×N and then apply NMF on it. To better understand the point
of this operation consider the spectrogram in figure 1.
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Fig. 1. NMF on spectrograms. The lower right plot is the input magnitude spectro-
gram, it represents two sinusoids with randomly gated amplitudes. The two columns
of W, interpreted as spectral bases, are shown in the leftmost plot. The rows of H,
depicted at the top plot, are the time weights corresponding to the two spectral bases.

It it easily seen that this spectrogram defines a scene that it composed out
of sinusoids of two frequencies beeping in and out in some random manner.
1 Ideally we would also apply a window function to the input sound to improve the

spectral estimation. Since it this isn’t a crucial addition to the process, we omit it
for notational simplicity.
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Applying a two-component NMF on this signal we obtain the two factors W
and H also shown in figure 1. If we examine the two columns of W, shown at
the leftmost plots of the figure, we notice that they have energy only at the two
frequencies that are present in the input spectrogram. We can interpret these two
columns as basis functions for the spectra contained in the spectrogram. Likewise
the rows of H, shown at the top of the figure, only have energy at the time points
where the two sinusoids do. We can interpret the rows of H as the weights of
the spectral bases at each time. The bases and the weights have a one-to-one
correspondence. The first basis describes the spectrum of one of the sinusoids and
the first weight vector describes its time envelope. Likewise the other sinusoid is
described in both time and frequency by the set of the second basis and second
weight vector. In effect we can say that we have performed a rudimentary sound
scene description. Although we presented a simplistic scenario this method is
powerful enough to dissect even a piece of complex piano music to a set of
weights and spectral bases describing each note played and its position in time,
effectively performing musical transcription (Smaragdis 2003).

3 Non-negative Matrix Factor Deconvolution

The process we described above works well for many audio tasks. It is however
a weak model since it does not take into account the relative positions of each
spectrum thereby discarding temporal information. In this section we will intro-
duce an extended version of NMF which deals with this issue. In the previous
section we used the model V ≈ W ·H. In this section we will extend it to:

V ≈
T−1∑

t=0

Wt ·
t→
H (4)

where V ∈ R
≥0,M×N is the input we wish to decompose, and Wt ∈ R

≥0,M×R

and H ∈ R
≥0,R×N are the bases and weights matrices. The

i→
(·) operator shifts

the columns of its argument by i spots to the right. So that:

A =
[

1 2 3 4
5 6 7 8

]

,
0→
A =

[

1 2 3 4
5 6 7 8

]

,
1→
A =

[

0 1 2 3
0 5 6 7

]

,
2→
A =

[

0 0 1 2
0 0 5 6

]

, ... (5)

The leftmost columns of the matrix are appropriately set to zero so as to maintain

the original size of the input. Likewise we define the inverse operation
←i

(·), which
shifts columns to the left.

Just as before our objective is to find a set of Wt and a H to approximate

V as best as possible. We set Λ =
∑T−1

t=0 Wt ·
t→
H and define the cost function:

D =
∥
∥
∥
∥
V ⊗ ln(

V
Λ

) − V + Λ
∥
∥
∥
∥

F

(6)

To optimize this model we can use a strategy akin to the one presented above,
only this time we will have to optimize more than just two matrices. The update
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rules for this case will be the same as when performing NMF for each iteration
of t, plus some shifting to appropriately line up the arguments:

H = H⊗ W�
t ·

←t[
V
Λ

]

W�
t · 1 and Wt = Wt ⊗

V
Λ ·

t→
H
�

1 ·
t→
H
� , ∀t ∈ [0...T − 1] (7)

In every training iteration for each t we update H and each Wt. That way we
can optimize the factors in parallel and account for their interplay. In complex
cases it is often useful to average the updates of H over all t’s. Due to the rapid
convergence properties of the multiplicative rules there is the danger that H has
been more influenced by the last Wt used for its update, rather than the entire
ensemble of Wt. To gain some intuition on the form of the factors Wt and H,
consider the data in figure 2.
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Fig. 2. A spectrogram and the extracted NMFD bases and weights. The lower right
plot is the magnitude spectrogram that we used as an input to NMFD. The two leftmost
plots are derived from W, and are interpreted as temporal-spectral bases. The rows of
H, depicted at the top plot, are the time weights corresponding to the two bases. Note
that the leftmost plots have been zero-padded in these figures from left and right so as
to appear in the same scale as the input plot.

Just like the previous example the scene contains two randomly repeating
elements, however they exhibit a temporal structure which cannot be expressed
by spectral bases spanning a single time unit. We perform a two-component
NMFD with T = 10. This results into a H and T Wt matrices of size M × 2.
The nth column of the tth Wt matrix is the nth basis offset by t spots in the
left-right dimension (time in our case). In other words the Wt matrices contain
bases that extend in both dimensions of the input. H, like in regular NMF, holds
the weights of these functions. Examining figure 2 we see that the bases in Wt

contain the finer temporal information in the present patterns, while H localizes
them in time.
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3.1 NMFD for Sound Object Extraction

Using the above formulation of NMFD we analyze a sound snippet which con-
tains a set of drum sounds. In this example the drum sounds exhibit some
overlap at both time and frequency. The input was sampled at 11.025 Hz and
analyzed with 256-point DFTs which were overlapping by 128-points. A han-
ning window was applied to the input to improve the spectral estimate. NMFD
was performed for 3 basis functions each with a time extend of 10 DFT frames
(R = 3 and T = 10). The results are shown in figure 3. There are three types
of drum sounds present into the scece; four instances of the bass drum (the
low frequency element), two instances of a snare drum (the two loud wideband
bursts), and the hi-hat the repeating high-band burst. Upon analysis we extract
a set of spectral/temporal basis functions from Wt. The weights from H show
us how these bases are placed in time. Examining the bases we see that they
have encapsulated the short-time spectral evolution of each drum. For example
the second basis has adapted to the bass drum structure. Note how the main
frequency of the basis drops with time and is preceded from a wide-band element
just like the bass drum sound. Likewise the snare drum basis is wide-band with
denser energy at the mid-frequencies, and the hi-hat basis is mostly high-band.
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Fig. 3. NMFD bases and weights for drum example. The lower right plot is the magni-
tude spectrogram that we used as an input. The three leftmost plots are the temporal-
spectral bases from Wt. Their corresponding weights and rows of H are depicted at the
top plot. Note how the extracted bases encapsulate the temporal/spectral structure of
the three drum sounds in the spectrogram.

Having this description is a valuable guide to perform separation. We can do
partial reconstructions of the input spectrogram using one basis function at a
time. For example to extract the bass drum which was mapped to the jth basis
we do:

V̂j =
T−1∑

t=0

W(j)
t ·

t→
H (8)
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where the (·)(j) operator selects the jth column of the argument. This gives us the
magnitude spectrogram of one component. We apply this to the original phase
of the spectrogram and invert the result to obtain a time series. Subjectively we
have found that the extracted elements consistently sound like the elements of
the input sound scene. Unfortunately it is very hard to come up with a useful
and intuitive measure that otherwise describes the quality of separation due
to various non-linear distortions and lost information, problems inherent in the
mixing and the analysis processes.

4 Conclusions

In this paper we presented an convolutional version of NMF. We have pinpointed
some of the shortcomings of conventional NMF when analyzing temporal pat-
terns and presented an extension which results in the extraction of more expres-
sive basis functions. We have also shown how these basis functions can be used
in the same way spectral bases have been used on spectrograms to extract sound
objects from single channel sound scenes.
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