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Abstract. Extrinsic calibration of large-scale ad hoc networks of cameras is
posed as the following problem: Calculate the locations of N mobile, rotationally
aligned cameras distributed over an urban region, subsets of which view some
common environmental features. We show that this leads to a novel class of graph
embedding problems that admit closed-form solutions in linear time via partial
spectral decomposition of a quadratic form. The minimum squared error (MSE)
solution determines locations of cameras and/or features in any number of dimen-
sions. The spectrum also indicates insufficiently constrained problems, which can
be decomposed into well-constrained rigid subproblems and analyzed to deter-
mine useful new views for missing constraints. We demonstrate the method with
large networks of mobile cameras distributed over an urban environment, using
directional constraints that have been extracted automatically from commonly
viewed features. Spectral solutions yield layouts that are consistent in some cases
to a fraction of a millimeter, substantially improving the state of the art. Global
layout of large camera networks can be computed in a fraction of a second.

1 Introduction

Consider a set of images taken from a large number of viewpoints distributed over a
broad area such as a city. The source might be a network of security cameras, one or
more tourists with cameras, or the collected uploads of camera-enabled mobile phones
in a neighborhood. Knowledge of camera positions will be useful for 3D-reconstruction
of the environment, tracing the tourist’s path, and offering location-aware services to the
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Fig. 1. A toy example of the embedding problem. The set of directional constraints at
left must be assembled into a maximally consistent graph. The solution (at right) may
have degrees of freedom. E.g., node 4 is only partially constrained. In 2D the problem
is trivial. In higher dimensions the constraint set may be simultaneously inconsistent,
overconstrained, and underconstrained. Our method characterizes and calculates the
space of all solutions.
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phone users. We seek to infer these viewpoints from the image set. This paper considers
the sparse case, where most viewpoint pairs have nothing in common, but small subsets
of cameras view some common environmental features. E.g., in a city, buildings and
other large occluders ensure that most images contain local features only.

Antone and Teller [1] demonstrated that it is possible to discover a sparse set of
feature correspondences in image sets of this nature. The correspondences can be found
from random search or from rough indicators of co-location, e.g., image histogram
matches, assignments to wireless communication cells, or global positioning system
(GPS) data. Given two internally calibrated cameras that view sufficiently many com-
mon scene features, it is possible to determine the relative geometry of the cameras, up
to scale and orientation [2,3]. Antone and Teller further demonstrated that the global
orientation of a set of partially overlapped views can be determined from an analysis
of feature correspondences and vanishing points in the images [1]. Therefore we have
directional information about some of the vectors connecting viewpoints to features (or
viewpoints to nearby viewpoints), but no information about distances or locations. This
paper introduces a fast spectral method for making a global assignment of viewpoints
and features to 3D locations from these sparse directional constraints.

1.1 Related work in computer vision

The subject of extrinsic camera calibration has been treated broadly in the computer
vision literature [4,2,3]. We review here methods that have decoupled rotational and
translational degrees of freedom (DOFs), or have been demonstrated for large or uncer-
tain inputs.

Several researchers have factored the 6-DOF extrinsic calibration problem in order
to reduce the number of parameters to be simultaneously estimated. Both interactive
[5,6,7] and automated [8,9] methods exist, and have been demonstrated for relatively
small numbers of images. Interactive methods do not scale effectively, and are vulner-
able to operator error and numerical instability. Projective techniques [10,11] recover
structure and pose only up to an arbitrary projective transformation. Other researchers
have described structure-from-motion methods using singular value decomposition [12]
or random search [13]. Most of these methods contemplate a much richer set of corre-
spondences than available in our problem. Antone and Teller proposed an iterative al-
gorithm for extrinsic calibration of networks of omni-directional images, using iterative
least-squares [1]; each iteration takes time linear in the number of constraints. Section 4
benchmarks our method against theirs.

1.2 Related work in graph embeddings

The problem we treat is a particularly well-specified graph embedding problem, and as
such bears relation to barycentric embedding proofs of Tutte [14,15] and their modern-
day descendent, the locally linear embedding algorithm of Roweis and Saul [16]. These
methods constrain node locations to be linear mixtures of their neighbor’s locations,
with known mixture weights; our method constrains node locations to be linear mixtures
of rays emanating from their neighbors, with mixture weights unknown. As it turns out,
our solution method has a novel algebraic structure; in contrast to all prior spectral
embedding methods, the solution is specified by a single eigenvector, regardless of the
dimensionality of the embedding.
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constraint 1→ 2 1→ 3 1→ 4 2→ 3 2→ 4 3→ 4 1→ 5
dx 0 0 1 0 1 1 1
dy 0 1 0 1 0 -1 1
dz 1 0 0 -1 -1 0 1

Fig. 2. A simple embedding problem in R3. The table of constraints yields a perfect
embedding, shown at left with node 1 at the origin, nodes 2-4 on each axis, and node 5
free to slide along a line passing through the middle of the face4234 and the origin. If
the constraints are made inconsistent (e.g., by changing the first directional constraint
1→ 2 to [1,1,2]>) the least-squares embedding (at right) spreads error evenly over
the inconsistent constraints. Node 5 is still free to slide. The small quivers emanating
from nodes 2,3,4 show the distances from these nodes to the ray constraints that involve
them; the minimal (nontranslational) eigenvalue of HE sums those squared distances.

2 Directionally constrained embeddings

The directionally constrained embedding problem is formally posed as follows: We
are given a set of N nodes xi ∈ Rdand an incomplete specification of node-to-node
directions di j ∈ Rd for some i, j ∈ [1,N] ⊂ N, i 6= j. The signs and lengths of the true
node-to-node displacements are unknown. What is the set of consistent embeddings in
Rd? Is the embedding uniquely determined (up to scale and translation)?

We develop a spectral solution based on the thin eigenvalue decomposition (EVD).
Let embedding matrix X .= [x1, · · · ,xN ] ∈ Rd×N contain the location xi ∈ Rd of the ith
node in column i. We seek an embedding where node-to-node displacements (x j−xi)
are maximally consistent with the constraint directions di j.

2.1 Maximum covariance spectral solution

To start simply, first consider maximizing the squared length of the projections of the
displacements onto the constraints:

C (X) .= ∑i j∈constrainted nodes ‖(xi−x j)>di j‖2 , (1)

where ‖X‖ denotes Frobenius (Euclidean) norm. Clearly C is a quadratic form and
therefore the problem is convex. To maximize C , consider the vertical concatenation of
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N embedding vectors y .= vecX = [x>1 ,x>2 , · · ·x>N ]> ∈ RdN×1 and the symmetric matrix

HC
.=

[
⇓i∑ j (di jd>i j +d jid>ji)

]
−

[
⇓i

[
⇒ j (di jd>i j +d jid>ji)

]]
∈ RdN×dN (2)

where ⇓,⇒, ⇓ denote vertical, horizontal, and diagonal concatenation, respectively.

Proposition 1. The maximizing eigenvector of HC determines the embedding y that
maximizes C up to sign and scale.

Proof. By construction,

C = ∑i j (xi−x j)>di jd>i j(xi−x j)

= ∑i j x>i (di jd>i j)xi +x>j (di jd>i j)x j−x>i (di jd>i j)x j−x>j (di jd>i j)xi

= y>HC y .

By the Schmidt-Eckart-Young theorem, the maximum of quadratic form (y>HC y)/(y>y)
is the largest eigenvalue λmax(HC ), attained at the corresponding eigenvector y = vmax(HC ).
The optimal embedding is therefore X = y(d) = v(d)

max, an order-d vector-transpose that
reshapes vector y ∈ RdN into matrix X ∈ Rd×N . �

Remark 1. The norm of any directional vector ‖di j‖ determines how strongly it con-
strains the final solution; if ‖di j‖= 0 the constraint is removed from the problem. Thus
we may entertain sparse, weighted constraints.

2.2 Minimum squared-error (MSE) spectral solution

Maximum covariance problems tend to favor solutions in which large displacements
are directionally accurate, sometimes at the expense of directionally inaccurate short
displacements. A minimum squared-error framework is preferable, because it spreads
error evenly over the solution, and guarantees an exact solution when allowed by the
constraints. To obtain the MSE solution, we minimize the components of the displace-
ments that are orthogonal to the desired directions. The error function is

E(X) .= ∑i j (‖(xi−x j)>d⊥i j‖ · ‖di j‖)2 , (3)

where d⊥i j is an orthonormal basis of the null-space of di j. One may visualize each
constraint di j as a ray emanating from the node i or j; E sums, over all nodes, the
squared distance from a node to each ray on which it should lie (scaled by the length
of the ray). The constraints are all weighted equally when all di j have the same norm.
Of course, if the constraints admit an errorless embedding, it will be invariant to any
nonzero rescaling of the constraints. To minimize E , let HE be constructed as HC ,
except that (di jd>i j) is replaced everywhere in equation 2 with

(d>i jdi j) · I−di jd>i j . (4)

Proposition 2. The minimizing eigenvector of HE in the space orthogonal to 1[N×1]⊗
I[d×d] determines the nondegenerate embedding y that minimizes E up to sign and scale.
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Proof. Following the previous proof, E(y) = y>HE y and is minimized by eigenpair
{E(y(d)) = λmin(HE ), y = vmin(HE )} because

(d>i jdi j) · I−di jd>i j = (d>i jdi j) · (I−di jd>i j/(d>i jdi j)) = (d⊥i j)‖di j‖2(d⊥i j)
>,

a scaled orthogonal projector that isolates the component of xi−x j that is orthogonal to
di j and scales it by ‖di j‖2. The 1⊗I constraint arises because the directional constraints
are trivially satisfied by mapping all nodes to a single point in Rd . This implies that the
nullspace of HE contains d nuisance eigenvectors that give an orthogonal basis for
locating the point anywhere in Rd . Algebraically, that basis is spanned by 1[N×1] ⊗
I[d×d], because HE (1⊗I) = 0[Nd×d]. (This also gives an orthogonal basis for translating
the solution in the embedding space). Therefore the nondegenerate embedding must be
in the (possibly approximate) nullspace of HE that is orthogonal to 1⊗ I. �

Appendix A outlines fast and stable methods for computing y in linear time.

Remark 2. Solutions are determined up to sign and scale (E(kX) = k2E(−X) for k ∈
R+). This compares favorably to current methods of spectral graph embeddings, where
a d-dimensional embedding requires d eigenvectors and is determined only up to arbi-
trary affine or orthogonal transforms in Rd .

Remark 3. (Uncertain constraints) If a direction is uncertain, one may replace vector
di j with a matrix Di j whose orthogonal columns are each scaled by the certainty that
the constraint lies in that direction. The outer product Σi j

.= Di jD>i j is effectively the
covariance of a Gaussian distribution over possible directions. The associated scaled
orthogonal projector is ‖Σi j‖2 · I−Σi j. If the columns of Di j are unscaled (unit norm),
the directional constraint is simply weakened to a subspace constraint, i.e., that x j−xi
lie as close as possible to the subspace spanned by Di j.

3 Problem pathologies

Although the spectral solution is MSE-optimal w.r.t. the constraints, in vision problems
the constraints themselves are derived from data and thus may be problematic. There-
fore additional tools are needed to detect and resolve ill-posed problems where the
constraint data is insufficient or inconsistent.

3.1 Underconstrained problems

A problem is underconstrained when (1) the connectivity graph is disconnected, al-
lowing two partial embeddings that can rigidly transform in each other’s coordinate
frame, or when (2) all constraints on a node are collinear, allowing it to slide along any
one directional constraint. Both cases will manifest themselves as multiple (near-) zero
eigenvalues in the spectrum of HE ; rotating any two eigenvectors in this (approximate)
nullspace will animate one such undesired degree of freedom (DOF), giving an orbit of
solutions. In this way eigenvalue multiplicity diagnoses the dimensionality of the sub-
space of solutions. However, multiplicity is not 1-to-1 with excess DOFs; an orbit may
be redundantly expressed in d eigenvectors, each giving different dynamics for varying
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the same positional DOF. Some further analysis is needed to characterize the intrinsic
DOFs in the problem specification.

When a solution has many DOFs, it is useful to cluster nodes that articulate together.
Intuitively, two nodes articulate together if they both have nonzero entries in an eigen-
vector associated with a zero eigenvalue. Let us call the collection of all such eigenvec-
tors the DOF matrix. The optimal clustering is given by the low-dimensional orthogonal
binary (0/1-valued) basis that best approximates the DOF matrix. Finding such a basis
is known to be NP-hard, so we take recourse in continuous relaxations of this prob-
lem, e.g., a spectral clustering of the row-vectors of the DOF matrix, or an independent
components analysis of its columns. The former seeks groupings whose motions are
most decorrelated; the latter seeks full statistical independence, a stronger condition.
An example is given below in figure 5. By identifying nonrigidities in the solution, this
analysis provides a useful basis for deciding which nodes need additional constraints,
e.g., in the form of additional nearby views and associated baseline directions.

3.2 Problems admitting “negative lengths”
Because E(−X) = E(X), the projection of a node-to-node displacement onto the de-
sired direction, (x j − xi)>di j, can be positive or negative. In general, perfectly con-
strained problems will admit solutions only where projections are either all positive
or all negative. But problems that are under constrained or that have inconsistent con-
straints may have MSE solutions with some projections of varied sign. An all-positive
solution can be found via quadratic programming (QP). The QP problem has an el-
egant statement using the eigenvalue decomposition HE → Vdiag(λ)V>: We seek a
nonzero vector m 6= 0 that mixes the eigenvectors y = Vm to incur minimal squared
error EQP

.= m>diag(λ)m = E(X) while keeping all lengths positive. Formally, the
QP problem is stated: Minimize EQP subject to m>V>[⇒i j vecKi j] ≥ 1, where each
Ki j ∈Rd×N is all zeros except for its ith and jth columns, which are ∓di j, respectively.
Scaling the resulting m to unit norm is equivalent to performing constrained optimiza-
tion on a hypersphere. Since eigenvectors paired to large eigenvalues are unlikely to be
used, we restrict the problem to consider only the smallest eigenvalue/vector pairs by
truncating V and λ. This yields a very small quadratic programming problem.

3.3 Problems having misaligned (rotated) nodes
In the alignment problem the ith node’s

Fig. 3. A set of directional con-
straints (solid arrows) that has a well-
constrained embedding for every rota-
tion of the shaded node. The two up-
per nodes simply slide along the dashed
lines.

constraints {di j} j are perturbed by a rotation
R>i which we want to identify and remove
prior to embedding. Assuming that the di-
rectional constraints are consistent with ob-
servation data, such perturbations will only
be detectable as sources of error in the em-
bedding. Sadly there exist some well-posed
embedding problems where rotations induce
no errors; see figure 3. Even when rotations
do produce error, the alignment problem is

almost certainly not convex because the error function is quartic in the rotation pa-
rameters (ignoring orthonormality constraints). However, if the perturbations are small
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and error-producing, it is reasonable to expect that the error function is approximately
convex in the neighborhood of the optimal solution, and that the MSE embedding is
only mildly distorted in this neighborhood. Thus an alternating least-squares procedure
that computes embeddings from rotated constraints and rotations from embeddings will
iterate to a set of constraints that admits a lower-error embedding. Strictly speaking,
this is guaranteed only if one rotation is updated per iteration, but for small pertur-
bations we find that the error declines monotonically when all rotations are updated
en masse. Solution for the optimal rotation is a Procrustes alignment problem: Collect
normalized directional constraints in matrix Ai

.= [⇒ j di j/‖di j‖] and normalized em-
bedding displacements in matrix Bi

.= [⇒ j (x j− xi)/‖x j− xi‖]. The optimal aligning
rotation Ri = argminR∈Rd×d |R>R=RR>=I ‖RAi−Bi‖F is Ri = VU> from the singular
value decomposition Udiag(s)V> = AiB>i . Normalization prevents potential errors due
to incorrect displacement lengths.

4 Example calibrations of camera networks

The least-squares spectral solution can be implemented in less than fifteen lines of
Matlab code. We first illustrate its properties with a simple problem in R3. Figure 2
shows a perfectly embeddable problem and how the embedding changes when the con-
straints are made inconsistent. Both problems have a single underconstrained node, so
λmin(HE ) has multiplicity two (ignoring translational DOFs). Rotating the associated
eigenvectors causes this node to slide back and forth on its constraint ray while the rest
of the solution changes scale to accommodate the algebraic constraint ‖y‖= 1.

To assess this method’s usefulness on real data with objective performance met-
rics, we obtained data derived from hundreds of cameras scattered over a university
campus [1] and posted to http://city.lcs.mit.edu. The datasets consist of 3D di-
rectional constraints that were obtained by triangulating pairs of cameras against com-
monly viewed features of buildings and an analysis of vanishing points in images. The
triangulations alone do not give a complete or consistent calibration. The cameras also
have rough estimates of ground truth from 2.5-meter-accurate GPS sensors. Other than
the noisy GPS data, there is no ground truth for this data. Therefore, we use the self-
consistency measures proposed by Antone and Teller to assess the quality of the spectral
embeddings as extrinsic camera registrations. Following [1], we report the 3D error of
node positions with respect to the directional constraints that apply to them (distance to
constraint rays, in millimeters), and the 2D orientation error of node-to-node displace-
ments (angle between displacement and constraint ray, in degrees).

4.1 Green court

The Green Court dataset consists of 32 nodes and 80 directional constraints spanning
an area of roughly 80 by 115 meters. The algorithm in [1] recovered global position
consistent on average to within 45 millimeters. The maximum position error for any
node was 81mm. Reported CPU time of a C implementation was roughly one hour, of
which the final layout phase took “a matter of seconds” (personal communication).

http://city.lcs.mit.edu
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optimal embedding, 
eigvec #1, 
E=3.51585e−14

GPS projected 
onto eigvecs #1−2, 
E=9.94566e−09

GPS projected 
onto eigvecs #1−3, 
E=1.43551e−07

GPS projected 
onto eigvecs #1−4, 
E=3.1285e−07

QP positive embedding 
(5 eigvecs), 
E=3.51791e−14

Noisy GPS data, 
E=0.0118918

Fig. 4. Spectral embedding of the Green Court data, viewed from above. Dotted graph
edges indicate problem constraints; each quiver represents the unsatisfied component of
a constraint, magnified 10×. The rightmost bottom graph shows that GPS errors on the
scale of a few meters are being corrected by visually determined constraints. The large
holes are building footprints. In this case, the raw spectral solution has strictly positive
edge lengths and is thus identical to the QP solution. Note that the spectral embedding
has much lower residual (E) than the GPS data. Projecting the GPS data onto low-error
embedding subspaces is analogous to data denoising via PCA.

Our Matlab implementation computed the optimal (minimum sum-squared error)
solution in roughly 1/4 second, reducing consistency errors by roughly four orders of
magnitude (see table 1). Figure 4 shows the optimal embedding using the minimizing
eigenvector and several embeddings obtained by projecting the GPS data onto low-order
eigenvectors of H, a form of data denoising analogous to that offered by principal com-
ponents analysis.

4.2 Ames Court

The Ames Court dataset consists of 158 nodes and 355 directional constraints spanning
roughly 315 by 380 meters. Antone and Teller report solving a 100-node subset of this
problem in which all nodes are properly constrained [1]. They recovered global position
consistent on average to within 57mm. The maximum pose inconsistency was 88mm.
Reported total CPU time was roughly four hours.
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1st nontrivial embedding, 
eigvec #14, 

E=7.64168e−05

GPS projected onto 
eigvecs #1−15,
E=7.45911e−05

GPS projected onto 
eigvecs#1−16,

E=7.46791e−05

GPS projected onto 
eigvecs  #1−17,
E=9.11772e−05

QP positive embedding 
(20 eigvecs),

E=0.000106564

Noisy GPS data, 
E=0.000282827

(a) nullspace (DOF) matrix;
rows=eigenvectors; cols=nodes

(b) sparse basis for embedding de-
grees of freedom

Fig. 5. Top: Spectral embedding of the Ames Court data, illustrated as in figure 4. Note
how the QP solution fixes degrees of freedom in the spectral solution. Subfigure (a)
depicts the DOF matrix, transposed such that each row grayscale-codes an eigenvector
giving a zero- or low-cost degree of freedom in the embedding. Intensities indicate
motility of nodes. Subfigure (b) shows a sparse binary basis for these degrees of freedom
obtained by thresholding an independent components analysis of the DOF matrix. Each
row indicates a node or group of nodes that can be moved without cost; physically, these
are “armatures” of the embedding, often nodes chained by collinear constraints.

The spectral embedding of the Ames dataset took roughly 3 seconds to compute.
Again, the consistency errors are reduced but the results are not directly comparable
with those in [1] because the problem is rather different than the version reported in
[1]—we have many more nodes and constraints, some of which are inconsistent. For
example, the Ames dataset contained one node whose constraints were rotated 43◦out of
alignment with the rest of the data. More notably, our dataset is also underconstrained.
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Green dataset spectral embedding mean max std
positional error (mm) 3.541×10−3 1.197×10−2 2.390×10−3

orientation error (degrees) 1.823×10−5 1.639×10−4 2.182×10−5

Ames dataset spectral embedding mean max std
positional error (mm) 5.696×102 2.511×103 3.704×102

orientation error (degrees) 2.280×100 4.273×101 3.035×100

Table 1. Consistency errors of the spectral embeddings of Green and Ames datasets.
World scale was estimated from GPS baselines.
This affords an opportunity to illustrate how the spectral analysis identifies degrees of
freedom in the solution.

The problem is underconstrained in that several nodes lack more than one linearly
independent constraint, and thus can slide freely. It is also overconstrained in that many
of the multiply constrained nodes have no error-free embedding; the constraints are
slightly inconsistent. Consequently the first 13 eigenvectors give E = 0 embeddings in
which the inconsistently constrained nodes are collapsed into point clusters while the
rest—mainly underconstrained nodes—are distributed through space. These “degener-
ate” solutions turn out to be degrees-of-freedom (DOFs) of the nontrivial solution, eigen-
vector v14, which is the first eigenvector with nonzero error E(v(3)

14 ) = λ14≈ 7.3×10−5.
It specifies an embedding that distributes all nodes through space in a reasonable but
imperfect reconstruction of the true scene geometry—reflecting constraints that are not
consistent with the true geometry of the scene. Figure 5 shows that the GPS data is well
reconstructed by projection to and back-projection from a low-error embedding sub-
space, comprising the zero-error DOFs (eigenvectors #1-13, which articulate individual
nodes), the base solution (eigenvector #14), and a few small-error DOFs (eigenvectors
#15-17, which articulate groups of densely connected nodes forming the “arms” of the
embedding). Enforcing positive lengths via a small quadratic programming problem
automatically finds the correct embedding as a mixture of the 20 lowest-error eigenvec-
tors. This QP embedding has roughly 1/3 the error of the GPS data, and remains stable
when more eigenvectors are considered in the QP problem. Rotational alignment further
reduces the error E by roughly an order of magnitude and corrects the 43◦ misaligned
node, among others. The rotationally aligned embedding is not diagrammed because it
is visually indistinguishable from the QP solution.

4.3 Campus

The Campus dataset consists of 566 nodes and 866 directional constraints spanning
roughly a square kilometer. This is far too few to specify an embedding (dim(null(HE ))≈
370), and indeed this dataset has never been processed as a whole. We used the 400
low-order eigenvectors of HE to denoise this data; figure 6 shows that consistency error
declines by an order of magnitude.

5 Discussion

The spectral method offers a linear-time optimal solution to graph embedding from
directional constraints. These solutions have maximal fidelity to the constraints and
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Noisy GPS data, E=355.303 GPS projected onto approximate nullspace, E=28.7076

Fig. 6. Denoising of MIT GPS dataset via approximate nullspace projection. The group
of nodes showing large inconsistencies in the original data (left) are straightened out in
the denoised data (right), consistent with the true scene geometry (a street).

provide a basis for identifying flaws in the constraints. Some flaws can be automatically
detected and corrected, yielding high-quality embeddings of ill-constrained problems
such as the Ames Court dataset even when the constraints have substantial systematic
errors. However in general there are classes of ill-posed problems that can be resolved
only via additional observations. In the case of the Ames court dataset, where we have a
nonrigid embedding that is partitioned into rigid subgraphs and a preferred layout based
on positivity constraints, one would propose new views where two subgraphs come
close to each other. In that light, one particularly attractive property of spectral schemes
is that a solution can be updated in near-linear time when new data arrives, since new
nodes and new constraints can be expressed as a series of low-rank modifications to
an expanded HE matrix. Therefore new viewpoints and environmental features can be
added incrementally and efficiently.
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A Computational considerations

Present-day numerical eigensolvers may not separate the nullspace of HE into transla-
tional and embedding eigenvectors, and in general are prone to numerical error sepa-
rating the nullspace and near-nullspace eigenvectors. Explicitly suppressing the trans-
lational eigenvectors usually improves the numerical stability of the problem. To do so,
project HE onto the orthogonal basis Q ∈ RNd×(N−1)d of the null-space of the transla-
tion basis (i.e., Q>Q = I and Q>(1⊗ I) = 0), eigen-decompose the reduced problem
there, then back-project the eigenvectors:

V′ΛV′> EVD← Q>HE Q (5)
V ← QV . (6)

The quadratic form HE is sparse and the null-space basis Q has a very simple struc-
ture, suggesting special computational strategies to defray the cost of computing a very
large EVD. In fact, neither matrix need be computed explicity to obtain the desired
eigenvector. First we observe that one can use equation (2) to compute y>(I−HE )
directly from y and the directional constraints, thereby yielding a power method for
computing the eigenpair {λmax(I−HE ), vmax(I−HE )}= {1−λmin(HE ), vmin(HE )}
without forming HE . Second, note that Q is a centering matrix: Q = null((1⊗ I)>) =
null(1>)⊗ I. The effect of Q in equations (5–6) is to force the solution to be cen-
tered on the origin by ensuring that all rows of X = y(d) sum to zero. Equations (5–6)
may be dispensed with by modifying the power method to recenter y on each itera-
tion. This results in an O(dc) time algorithm for d dimensions and c > N constraints.
For sparsely constrained problems, complexity is mildly supralinear in the number of
nodes (O(dc)≈O(dN)); in a densely constrained problem the complexity will approach
O(dN2) from below.
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