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Abstract— We consider realistic multiple input multiple output
antenna systems operating over spatially colored channels with
instantaneous, albeit imperfect, channel state information at the
receiver and only covariance knowledge available at the trans-
mitter. We focus on pilot-aided channel estimation in which the
receiver uses minimum mean square error channel estimation.
For such a setup, our goal is then to optimally design both
the pilot and data sequences to maximize the information rates
achievable over the channel. We first demonstrate that the estima-
tion error cannot be modeled as additive white Gaussian noise.
We adopt a lower bound on channel capacity with imperfect
channel knowledge and show that an optimum design leads to a
matching of the eigenspaces of the pilots and of the data to the
eigenspace of the channel. Furthermore, the ranks of the pilot
and data covariance matrices need to be equal, and the optimal
training duration need only equal the above rank. The assignment
of powers to the different modes of transmission can then be
obtained numerically. This paper, in essence, extends the results
in the literature that assume perfect channel knowledge at the
receiver, and shows that fully exploiting covariance knowledge
leads to a visible improvement in capacity when compared to
schemes that assume no channel knowledge, whatsoever, at the
transmitter.

Index Terms— MIMO systems, Antenna arrays, Receiving
antennas, Transmitting antennas, Covariance matrices, Training,
Fading channels, Time-varying channels, Least mean square
methods, Information rates, Matrix decomposition, Estimation,
Data communication, Scattering, Optimization methods, Array
signal processing, Feedback communication, Gaussian channels,
Gaussian noise, Transmitters, Radio communication

I. INTRODUCTION

The prediction of high data rates achievable under idealized
conditions by multiple input multiple output (MIMO) antenna
systems [1], [2] has spurred studies of the capacity achievable
by them under various more realistic assumptions about the
channel as well as the transmitter and receiver architectures. It
is now widely understood that the spatial channel model and
assumptions about the channel state information (CSI) at the
transmitter (CSIT) and the receiver (CSIR) have a significant
impact on the MIMO capacity [3].

For many systems, instantaneous CSIT is not feasible.
For frequency division duplex (FDD) systems, in which the

+The author was with Mitsubishi Electric Research Labs during the course
of this work.

∗A. F. Molisch is also at the Department of Electroscience, Lund University,
Lund, Sweden.

forward and the reverse links operate at different frequencies,
instantaneous CSIT requires fast feedback, which decreases
the overall capacity of the system. For time division duplex
(TDD) systems, in which the forward and reverse links operate
at the same frequency, the use of instantaneous CSIT is
impractical in channels with small coherence intervals as it
necessitates short delays between these links.

Transmitter design based only on small-scale-averaged
statistics such as covariance knowledge circumvents this prob-
lem because covariance varies slowly and is determined by
parameters like angular spread, mean angles of arrival, etc.
These parameters are the same for both links even in FDD
or quickly-varying TDD systems. Therefore, systems with
covariance knowledge at the transmitter, denoted henceforth
by CovKT, have received great attention recently [4]–[7].
However, all of these papers assume perfect CSIR.

Our paper considers a system in which the transmitter
has access to only CovKT and the receiver uses a pilot-
aided spatial minimum mean square error (MMSE) filter to
generate instantaneous, albeit imperfect, CSIR. For brevity,
we shall henceforth call this an MMSE receiver.1 A novel and
joint design of both the data and the pilots is proposed and
optimizes a capacity bound on this system. For a given block
fading length, we derive the necessary conditions for pilots
and data to maximize capacity. The training duration and the
power allocation ratio between the pilots and the data are also
optimized. We show that covariance knowledge enables a more
tailored pilot design resulting in a higher capacity than uniform
pilot loading over all antennas that was previously assumed in
the literature.

In the following, we briefly discuss related papers and
explain how their assumptions differ from ours. A considerable
body of work has been derived for spatially white channels.
While this case gives valuable first insights, it does not
correspond to the physical reality of most MIMO channels [8].
For the case of no CSIT and an MMSE receiver, Hassibi and
Hochwald [9] considered pilot-aided channel estimation for a
block fading wireless channel and derived a lower bound on
the capacity given imperfect estimation at the receiver. They

1Note that this does not refer to how the receiver processes the spatially
multiplexed payload data.



then derived the optimal training sequences, training duration,
and data and pilot power allocation ratio. The problem, includ-
ing the case of a mismatched closed-loop system, has also been
investigated in [10]–[12]. Orthogonal training sequences were
shown to be optimal by Marzetta [13].

Data covariance for noisy channel estimates in spatially
colored channels was looked at in [14]. However, the esti-
mation noise was modeled in an ad hoc manner by adding a
white noise to the channel state’s spatially white component.
In contrast to the aforementioned works, this paper takes into
account channel correlation, training sequences, and MMSE
channel estimation. Following a different track, lower and
upper bounds on capacity were derived in [4], [15] without
having to assume any a priori training schemes for generating
CSIR, and serve as fundamental limits on capacity.

The rest of this paper is organized as follows. Section II
sets up the basic model and notation. The joint pilot and data
loading scheme is analyzed in Section III, and the numerical
results are discussed in Section IV. We conclude in Section V.
Only key mathematical details are highlighted in this paper;
several details that are skipped are available in [16].

II. MIMO LINK MODEL

We consider a MIMO system with Nt transmit antennas and
Nr receive antennas operating in a block fading frequency-flat
channel model [15], in which the channel remains constant
for T time instants and decorrelates thereafter. Of the T time
instants, Tp are used for transmitting pilots, and the remaining
Td = T −Tp for data. We shall use the subscripts p and d for
symbols related to pilots and data, respectively. Let Pp and
Pd denote the power allocated to pilots and data, respectively.
Lower and upper case boldface letters shall be used to denote
vectors and matrices, respectively.

A. Channel Model

The Nr × Nt matrix H denotes the instantaneous channel
state, where hij denotes the complex fading gain from transmit
antenna j to receive antenna i. Experimental results have
demonstrated that many channels allow a representation of
their correlation matrix as a Kronecker product of the transmit
and receive correlation matrices [17]. H is then given by

H = R1/2
r HwR

1/2

t , (1)

where Rt and Rr are the transmit and receive antenna cor-
relation matrices, respectively. Hw is spatially white, i.e., its
entries are zero-mean, independent, complex Gaussian random
variables (RVs) with unit variance. Furthermore, we assume
that Rr = INr

, which is fulfilled when the receiver is in a rich
scattering environment, as is typically the case in the downlink
of a cellular system, or a wireless LAN system from the access
point to the receiving station. Rt is taken to be full rank.

B. Training Phase

The signal received during the training phase of duration
Tp instants, is an Nr × Tp matrix, Yp = [yij ], where yij is

the signal received at receive antenna i at time instant j. Yp

is given by
Yp = HXp + Wp, (2)

where Xp = [xij ] is the transmitted pilot matrix of size
Nt × Tp and is known a priori at the receiver. Here, xij is
the signal transmitted from transmit antenna i at time j. Wp

is the spatially and temporally white noise matrix, defined in
a similar manner; its entries have variance σ2

w.

C. Data Transmission

The noise vectors at different time instants are independent
and identically distributed. Therefore, considering the capac-
ity for block transmissions is equivalent to considering the
capacity for vector transmissions. For any given time instant,
the received vector, yd, is related to the transmitted signal
vector, xd, by

yd = Hxd + wd, (3)

where wd is the spatially white noise vector. yd, xd, and wd

are of dimensions Nr × 1, Nt × 1, and Nr × 1, respectively.

D. Other Notation

In the paper, EΓ1|Γ2 denotes the expectation over the RV Γ1

given Γ2, (.)† is the Hermitian transpose, (.)T is the transpose,
(.)(k) is the k × k principal sub-matrix formed by including
the first k rows and the first k columns, Tr {.} is the trace, |.|
is the determinant, and In denotes the n × n identity matrix.
The matrices Qd = Exd

[
xdx

†
d

]
and Qp = XpX†

p denote the

data and pilot covariance matrices, respectively.2 The singular
value decompositions of Qd, Xp, Qp, and Rt are written as
Qd = UdΛdU

†
d, Xp = UpΣpV†

p, Qp = UpΛpU†
p, and

Rt = UtΛtU
†
t . Note that Qd, Qp, and Rt are all Hermitian.

Also, Λp = ΣpΣ†
p.

E. MMSE Channel Estimator

Given the covariance information and the pilots Xp, the
MMSE channel estimator passes the received Yp through a
deterministic matrix filter to generate the channel estimate Ĥ.
For Rr = INr

, it can be shown that,

Ĥ = YpA = (HXp + Wp)A,

where
A = (X†

pRtXp + σ2
wITp

)−1X†
pRt. (4)

Furthermore, Ĥ is statistically equivalent to

Ĥ = H̃wR̃
1/2

t , (5)

where H̃w is spatially white with its entries having unit
variance, and R̃t is given by

R̃t = RtXp(X†
pRtXp + σ2

wITp
)−1X†

pRt. (6)

The above result shows that, for an MMSE estimator, the error
due to noise during estimation also affects the transmit antenna

2Given that the pilot Xp is a deterministic matrix, no expectation operator
is used for defining Qp.



correlation matrix of the estimated channel Ĥ, and cannot be
modeled by mere addition of a spatially white noise to Hw,
as was done in other work.

F. Capacity with Estimation Error

The channel estimation error is defined as ∆ = H − Ĥ.
From (3), it follows that the data transmission phase is
governed by the equation

yd = Ĥxd + ∆xd + wd. (7)

A capacity lower bound is obtained by considering a sub-
optimal receiver that treats the term e = ∆xd + wd as
Gaussian noise [9], [18]. The channel capacity is therefore
lower bounded by

C∆ =
(

1 − Tp

T

)
EĤ log2

∣∣∣INt
+ Ĥ† (

Ee

[
ee†

])−1
ĤQd

∣∣∣ .

The factor
(
1 − Tp

T

)
is the training penalty resulting from

pilot transmissions, which transfer no information.
Eqn. (5) implies that the distribution of Ĥ is left rotationally

invariant3, i.e., π(ΘĤ) = π(Ĥ), where π(.) denotes the
probability distribution function and Θ is any unitary matrix.
It therefore follows from [9] that C∆ is further lower bounded
by,

C∆ ≥ CL =
(

1 − Tp

T

)
EĤ log2

∣∣∣∣INt
+

1
σ2

w + σ2
l

Ĥ†ĤQd

∣∣∣∣ ,

(8)
where σ2

l = 1
Nr

Tr
{

E∆,xd

[
∆xdx

†
d∆

†
]}

. It can be shown
that

σ2
l = Tr

{
Qd(Rt − R̃t)

}
. (9)

III. OPTIMAL JOINT PILOT AND DATA LOADING

We now seek solutions that maximize CL, the lower bound
on MIMO capacity with imperfect CSIR. The maximization
problem can be stated as:

max
Ud,Λd
Xp,Tp

(
1 − Tp

T

)
EĤ log2

∣∣∣∣∣∣INt
+

Ĥ†ĤQd

σ2
w + Tr

{
Qd(Rt − R̃t)

}
∣∣∣∣∣∣ ,

subject to the total energy constraint

PpTp + PdTd = PT, (10)

where Tr {Qd} = Pd, Tr
{
XpX†

p

}
= PpTp, and P is the

total power budget. We first state the following lemma [19,
Thm. 7.4.10] that shall come in handy.

Lemma 1: If AB and BA are positive semi-definite,
there always exists a permutation τ such that Tr {AB} =
Tr {BA} =

∑
i σi(A)στ(i)(B), where σi(.) denotes the ith

largest singular value. �
The following theorem deals with just the self-interference

term σ2
l .

3Due to notational differences, left rotational invariance in this paper is
equivalent to right rotational invariance in [9].

Theorem 1:

min
Up,Ud

σ2
l = min

Up,Ud

Tr
{
Qd(Rt − R̃t)

}
= σ2

w

Nt∑
i=1

λdi
λti

σ2
w + λti

λpi

,

where λt1 ≥ λt2 ≥ . . . ≥ λtNt
, λd1 ≥ λd2 ≥ . . . ≥ λdNt

, and
λp1 ≥ λp2 ≥ . . . ≥ λpNt

.
Proof: In the sequence of inequalities that follow, we first

arrive at a lower bound for σ2
l , without commenting at each

step, on the conditions required to achieve equality. At the
very end, we show that equality is indeed achievable.

First, define the following matrices,

S3 = U†
[(

(UΛtU†)(kp) + σ2
wΛ(kp)−1

p

)−1

0
0 0

]
U,

S2 = Λt(INt
−S3Λt), and S1 = VS2V†, where U = U†

pUt

and V = U†
dUt.

It can be shown that σ2
l = Tr {ΛdS1}. Lemma 1 enables

the following key simplification that eliminates V:

min Tr {ΛdS1} = min Tr {ΛdS2} ,

= Tr {ΛdΛt} − max Tr
{
ΛdΛ2

tS3

}
.

Only Tr
{
ΛdΛ2

tS3

}
now remains to be maximized. It can then

be shown that

Tr
{
ΛdΛ2

tS3

} ≤ Tr
{
S−1

4

}
, (11)

where

S4 = Λ(kp)−1

d Λ(kp)−1

t

(
Ikp

+σ2
wU(kp)−1

Λ(kp)−1

p U(kp)−1
Λ(kp)−1

t

)
.

Equality occurs when U(kp) is unitary.
Using results from matrix algebra [20] and Lemma 1, we

know that the extrema of Tr
{
S−1

4

}
occur when U(kp) is a

unitary, permutation matrix. It turns out that the identity per-
mutation U(kp) = Ikp

maximizes Tr
{
ΛdΛ2

tS3

}
. Therefore,

σ2
l ≥ Tr {ΛdΛt}−

kp∑
i=1

λti
λdi

1 + σ2
wλ−1

pi λ−1
ti

= σ2
w

Nt∑
i=1

λdi
λti

σ2
w + λti

λpi

,

where kp is the rank of Qp. Finally, that equality is
achievable is verified by substituting Up = Ud = Ut in

Tr
{
Qd(Rt − R̃t)

}
and simplifying its expression.

CL is a function of Qd = UdΛdU
†
d and R̃t = ŨtΛ̃tŨ

†
t ,

which depends on the pilots Xp = UpΣpV†
p. The optimal

joint pilot and data design that maximizes CL now follows.
Theorem 2: CL satisfies the following upper bound:

CL(Λd,Ud,Xp) ≤(
1 − Tp

T

)
EH̃w

log2

∣∣∣∣∣∣INt
+

H̃†
wH̃wΛ̃tΛd

σ2
w + σ2

w

∑Nt

i=1

λti
λdi

σ2
w+λpi

λti

∣∣∣∣∣∣ .

Furthermore, the upper bound is achieved when the
eigenspaces match: Ud = Up = Ut = Ũt, and, therefore,
constitutes an optimal solution. �

The proof for Thm. 2, not shown here, obtains consecutive
upper bounds by first minimizing the denominator (using



Thm. 1) and then independently maximizing the numerator.
In general, the maximizing arguments responsible for the two
optimizations need not be the same, and the upper bound need
not be achievable. However, the special structure inherent in
our problem makes it a notable exception.

After eigenspace matching, Λ̃t simplifies to

Λ̃t = Λ2
tΛp

(
ΛtΛp + σ2

wITp

)−1
. (12)

Let kd and kp denote the ranks of Qd and Qp, respectively.
We now state the rank properties of the optimal Qd and Qp,
and the optimal training duration Tp. The proofs are in [16].

Theorem 3: The data and pilot loading matrices Qd and
Qp must be of the same rank to maximize CL. �

Theorem 4: CL is maximized when Tp = kp = k. �
Given that [1] kd ≤ min(Nt, Nr), an important implication
for transmit diversity systems with Nr < Nt is the following.

Corollary 1: Tp ≤ min(Nt, Nr). �
The singular values of Qd and Qp, namely, Λd and Λp

(and thereby Pd, Pp, and k) depend on P , T , and Λt, and
are optimized numerically. Note that the conditions derived
above, combined with the simple expressions for CL and Λ̃t,
drastically reduce the search space to determine all the optimal
parameters, and make the search feasible.

IV. RESULTS AND DISCUSSION

While the results above are applicable to arbitrary antenna
arrangements, the numerical results presented in this section
are for uniform linear arrays (ULA) at the transmitter and
the receiver. Four transmit and receive antennas are assumed
(Nt = Nr = 4), the mean angle of departure is 45◦, and
the antenna spacing is dt = 0.5λ, where λ is the carrier
wavelength. The block fading duration, T , is 10, and the noise
variance, σ2

w, is normalized to 1, without loss of generality.
The transmitter covariance matrix Rt for a ULA is evaluated
from [21]. The effects of varying system parameters such as
Nr, Nt, T , etc., are investigated in detail in [16], [22].

Figure 1 plots CL as a function of the total power budget P
(in dB) for σθ = 5◦, 10◦, 15◦, and 30◦. We first note that for
small P , CL increases as the angular dispersion σθ decreases.
This can be explained as follows. At lower P values, only
one eigenmode is used. This corresponds to the region where
beam-forming (rank(Qd) = 1) is optimal [23]. Reducing σθ

increases the spread of the eigenvalues and concentrates more
of the energy in the strongest eigenmode of Rt that is used
for transmission, thereby increasing the capacity. On the other
hand, for higher values of P , it is optimal to allocate power to
more, or even all, the eigenmodes of Rt. Therefore, increasing
σθ, which leads to a smaller spread in the eigen values for
different modes, increases capacity. The points at which the
number of eigenmodes used for transmission, k, changes are
also illustrated in the figure.

Figure 2 investigates the optimal power ratio α = Pp/Pd,
as a function of P for σθ = 5◦, 10◦, 15◦, and 30◦. As P
increases, α monotonically decreases from a value greater
than 3.0 for P = 0 dB to 1.5 for large P . However, α is
always greater than 1. The discontinuities in α occur when

more eigenmodes of Rt begin to get used for transmission. k
is the primary factor that determines the ratio; given k = 1, α
marginally increases with σθ and is sensitive to P , while for
the same k > 1, α is insensitive to both σθ and P .

A. Combined Impact of Estimation Error and Covariance
Knowledge

Figure 3 compares CL, the capacity achieved by the pro-
posed system that jointly designs the pilot and data given
CovKT and pilot-aided imperfect estimation at the receiver,
with systems in which covariance knowledge at the transmitter
is not exploited or is unavailable and perfect or imperfect
estimation at the receiver. The parameter values are σθ = 10◦,
T = 10, and Nr = Nt = 4. Note that in the idealized systems
with perfect CSIR, resources need not be wasted on pilots
(Pp = 0 and Tp = 0). For reference, the performance of a
system with CovKT that has perfect CSIR and, yet, incurs a
training penalty equal to the number of transmit modes in use
is also plotted. Without any CSIT, the training duration Tp

needs to be Nt [9].
It can be seen that CovKT with perfect CSIR yields the same

capacity as instantaneous and perfect CSIT and CSIR. Com-
pared to the worst case (imperfect CSIR and no CSIT), perfect
estimation of the CSIR (without exploiting CovKT), improves
the capacity by 0.6 bits/sec/Hz at 0 dB and 1.7 bits/sec/Hz at
30 dB. Exploiting CovKT increases the capacity by another
1.1 bits/sec/Hz at 0 dB and 1.7 bits/sec/Hz at 30 dB, even
though the CSIR is imperfect.

V. CONCLUSIONS

We considered a novel system that tailors not only the data,
but also the pilot sequences, to the covariance knowledge that
is available at the transmitter. Unlike instantaneous channel
state information, covariance knowledge at the transmitter
varies slowly and can be obtained, without explicit feedback,
even in FDD systems and quickly-varying TDD systems.
Mirroring reality, the CSIR was not assumed to be perfect – it
was acquired at the receiver using pilot-aided MMSE channel
estimation. Based on an analytically tractable lower bound
of the ergodic capacity, we found a jointly optimal solution
for pilots and data. The capacity is maximized when the
eigenspaces of the covariance matrices of the pilots and data
match that of the transmit covariance matrix Rt. Furthermore,
it is optimal to transmit the data over only those eigenmodes
of Rt that are allocated power during training and vice versa.
It was shown that the optimal training duration can indeed
be less than the number of transmit antennas, and equals the
number of eigenmodes used for data transmission. For low
angular spreads, imperfect CSIR with covariance knowledge
outperforms perfect CSIR that does not exploit covariance
knowledge.

These results are in contrast to those without CovKT in [9],
[13], where the optimal training duration was Nt and the opti-
mal pilot sequences were orthogonal. The results demonstrate
that fully exploiting covariance knowledge at the transmitter
increases the ergodic capacity achievable by realistic MIMO



systems. Our results are also a generalization of the results in
the literature that assume perfect CSIR in their derivations.
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Fig. 1. Ergodic capacity, CL, and eigenmode transitions as a function of
P (dB) for small angular dispersions: σθ = 5◦, 10◦, 15◦, and 30◦ (Nt =
Nr = 4, T = 10).
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Fig. 2. Effect of P and σθ on the optimal power ratio α (Nt = Nr = 4,
T = 10).
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Fig. 3. Ergodic capacity comparison of systems with and without covariance
knowledge at transmitter and with perfect or imperfect CSIR for σθ = 10◦
(Nt = Nr = 4, T = 10).
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