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Abstract

Speech recognition performance degrades significantly in distant-talking environments, where the

speech signals can be severely distorted by additive noise and reverberation. In such environments, the

use of microphone arrays has been proposed as a means of improving the quality of captured speech

signals. Currently, microphone-array-based speech recognition is performed in two independent stages:

array processing and then recognition. Array processing algorithms designed for signal enhancement

are applied in order to reduce the distortion in the speech waveform prior to feature extraction and

recognition. This approach assumes that improving the quality of the speech waveform will necessarily

result in improved recognition performance and ignores the manner in which speech recognition systems

operate. In this paper a new approach to microphone-array processing is proposed in which the goal of

the array processing is not to generate an enhanced output waveform but rather to generate a sequence

of features which maximizes the likelihood of generating the correct hypothesis. In this approach, called

Likelihood-Maximizing Beamforming (LIMABEAM), information from the speech recognition system

itself is used to optimize a filter-and-sum beamformer. Speech recognition experiments performed in a

real distant-talking environment confirm the efficacy of the proposed approach.

Index Terms

microphone array processing, robust speech recognition, beamforming, adaptive filtering, distant-

talking environments

EDICS Category: 1-RECO, 2-TRAN, 1-ENHA



1

Michael L. Seltzer* Bhiksha Raj Richard M. Stern

Microsoft Research Mitsubishi Electric Research Labs Carnegie Mellon University

Speech Technology Group Cambridge Research Lab Dept. of Electrical & Computer Engineering

and School of Computer Science

1 Microsoft Way 201 Broadway 5000 Forbes Ave

Redmond, WA 98052 Cambridge, MA 02139 Pittsburgh, PA 15213

tel: (425) 706-3763 tel: (617) 621-7500 tel: (412) 268-2535

fax: (425) 706-7329 fax: (617) 621-7550 fax: (412) 268-3890

email: mseltzer@microsoft.com email: bhiksha@merl.com email: rms@cs.cmu.edu



2

Likelihood-Maximizing Beamforming for

Robust Hands-Free Speech Recognition

I. I NTRODUCTION

State-of-the-art automatic speech recognition (ASR) systems are known to perform reasonably well

when the speech signals are captured using a close-talking microphone worn near the mouth of the

speaker. However, there are many environments where the use of such a microphone is undesirable for

reasons of safety or convenience. In these settings, such as vehicles, meeting rooms, and information

kiosks, a fixed microphone can be placed at some distance from the user. Unfortunately, as the distance

between the user and the microphone grows, the speech signal becomes increasingly degraded by the

effects of additive noise and reverberation, which in turn degrade speech recognition accuracy. The use

of an array of microphones, rather than a single microphone, can compensate for this distortion in these

distant-talking environments, by providing spatial filtering to the sound field, effectively focusing attention

in a desired direction.

Many microphone array processing techniques which improve the quality of the output signal and

increase the signal-to-noise ratio (SNR) have been proposed in the literature. The simplest and most

common method is called delay-and-sum beamforming [1]. In this approach, the signals received by the

microphones in the array are time-aligned with respect to each other in order to adjust for the path-

length differences between the speech source and each of the microphones. The time-aligned signals

are then weighted and added together. Any interfering signals that are not coincident with the speech

source remain misaligned and are thus attenuated when the signals are combined. A natural extension

of delay-and-sum beamforming is filter-and-sum beamforming, in which each microphone signal has an

associated filter and the captured signals are filtered before they are combined.

In adaptive beamforming schemes such as the Generalized Sidelobe Canceller (GSC) [2], the array

parameters are updated on a sample-by-sample or frame-by-frame basis according to a specified criterion.

Typical criteria used in adaptive beamforming include a distortionless response in the look direction and/or

the minimization of the energy from all directions not considered the look direction. In some cases, the

array parameters can be calibrated to a particular environment or user prior to use,e.g. [3].

Adaptive filtering methods such as these generally assume that the target and jammer signals are

uncorrelated. When this assumption is violated, as is the case for speech in a reverberant environment, the



3

methods suffer from signal cancellation because reflected copies of the target signal appear as unwanted

jammer signals. While various methods have been proposed to mitigate this undesirable effect,e.g.[4], [5],

signal cancellation nevertheless still arises in reverberant environments. As a result, conventional adaptive

filtering approaches have not gained widespread acceptance for most speech recognition applications.

A great deal of recent research has focused specifically on compensating for the effects of reverberation.

One obvious way to perform dereverberation is to invert the room impulse response. However, methods

based on this approach have largely been unsuccessful because room impulse responses are generally non-

minimum phase which causes instability in the inverse filters [6]. Rather than performing deconvolution,

some researchers take a matched filter approach to dereverberation,e.g.[7], [8]. While there are theoretical

benefits to such an approach in terms of improved SNR, matched filtering has been shown to provide

only minimal improvement in speech recognition accuracy over conventional delay-and-sum processing,

even if the room impulse responses are knowna priori [9].

All of these microphone array processing methods were designed for signal enhancement, and as

such, process incoming signals according to various signal-level criteria,e.g.minimizing the signal error,

maximizing the SNR, or improving the perceptual quality as judged by human listeners. Conventional

microphone-array-based speech recognition is performed by utilizing one of these algorithms to generate

the best output waveform possible, which then gets treated as a single-channel input to a recognition

system. This approach, shown in Figure 1(a), implicitly assumes that generating a higher quality output

waveform will necessarily result in improved recognition performance. By making such an assumption,

the manner in which speech recognition systems operate is ignored.

A speech recognition system does not interpret waveform-level information directly. It is a statistical

pattern classifier that operates on a sequence of features derived from the waveform. We believe that

this discrepancy between the waveform-based objective criteria used by conventional array processing

algorithms and the feature-based objective criteria used by speech recognition systems is the key reason

why sophisticated array processing methods fail to produce significant improvements in recognition

accuracy over far simpler methods such as delay-and-sum beamforming. Speech recognition systems

generate hypotheses by finding the word string that has the maximum likelihood of generating the observed

sequence of feature vectors, as measured by statistical models of speech sound units. Therefore, an array

processing scheme can only be expected to improve recognition performance if it generates a sequence

of features which maximizes, or at least increases, the likelihood of the correct transcription, relative to

other hypotheses.

In this paper, we present a new array processing algorithm calledLIkelihood-MAximizing BEAMforming
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Fig. 1. (a) Conventional architecture used for speech recognition with a microphone array front-end. The objective of the array

processor is to estimate the cleanwaveform. (b) An architecture for array processing optimized for speech recognition. The

array processor and the speech recognizer are fully connected, allowing information from the recognizer to be used in the array

processing. Note that the system no longer attempts to estimate the clean waveform.

(LIMABEAM), in which the microphone array processing problem is recast as one of finding the set of

array parameters that maximizes the likelihood of the correct recognition hypothesis. The array processor

and the speech recognizer are no longer considered two independent entities cascaded together, but rather

two interconnected components of a single system, with the common goal of improved speech recognition

accuracy, as shown in Figure 1(b). In LIMABEAM, the manner in which speech recognition systems

process incoming speech is explicitly considered and pertinent information from the recognition engine

itself is used to optimize the parameters of a filter-and-sum beamformer.

LIMABEAM has several advantages over current array processing methods. First, by incorporating

the statistical models of the recognizer into the array processing stage, we ensure that the processing

enhances those signal components important for recognition accuracy without undue emphasis on less

important components. Second, in contrast to conventional adaptive filtering methods, no assumptions

about the interfering signals are made. Third, the proposed approach requires noa priori knowledge of

the room configuration, array geometry, or source-to-sensor room impulse responses. These properties

enable us to overcome the drawbacks of previously-proposed array processing methods and achieve better

recognition accuracy in distant-talking environments.

The remainder of this paper is organized as follows. In Section II, filter-and-sum beamforming is briefly

reviewed. The LIMABEAM approach to microphone-array-based speech recognition is then described
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in detail in Section III. In Section IV, two implementations of LIMABEAM are presented, one for use

in situations in which the environmental conditions are stationary or slowly varying and one for use in

time-varying environments. The performance of these two algorithms is evaluated in Section V through

a series of experiments performed using a microphone-array-equipped Personal Digital Assistant (PDA).

Some additional considerations for these algorithms are presented in Section VI. Finally, we present a

summary of this work and some conclusions in Section VII.

II. F ILTER-AND-SUM BEAMFORMING

In this work, we assume that filter-and-sum array processing can effectively compensate for the

distortion induced by additive noise and reverberation. Assuming the filters have a finite impulse response

(FIR), filter-and-sum processing is expressed mathematically as

y[n] =
M−1∑

m=0

P−1∑

p=0

hm[p]xm[n− p− τm] (1)

wherehm[p] is thepth tap of the filter associated with microphonem, xm[n] is the signal received by

microphonem, τm is the steering delay induced in the signal received by microphonem to align it to

the other array channels, andy[n] is the output signal generated by the processing.M is the number of

microphones in the array andP is the length of the FIR filters.

For notational convenience, we defineξ to be the vector of all filter coefficients for all microphones,

as

ξ = [h0[0], h0[1], . . . , hM−1[P − 2], hM−1[P − 1]]T (2)

III. L IKELIHOOD-MAXIMIZING BEAMFORMING (LIMABEAM)

Conventionally, parameters of a filter-and-sum beamformer are chosen according to criteria designed

according to the notion of adesired signal. In contrast, we consider the output waveformy[n] to be

incidental and seek the filter parameters that optimize recognition accuracy. Therefore, we forgo the notion

of a desired signal, and instead focus on adesired hypothesis. In order to so, we must consider both (1)

the manner in which speech is input to the recognition system,i.e. the feature extraction process, and (2)

the manner in which these features are processed by the recognizer in order to generate a hypothesis.

Speech recognition systems operate by finding the word stringw most likely to generate the observed

sequence of feature vectorsZ = {z1,z2, . . . ,zT }, as measured by the statistical models of the

recognition system. When the speech is captured by a microphone array, the feature vectors are a function
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of both the incoming speech and the array processing parameters. Recognition hypotheses are generated

according to Bayes optimal classification as

ŵ = argmax
w

P (Z(ξ)|w)P (w) (3)

where the dependence of the feature vectorsZ on the array processing parametersξ is explicitly shown.

The acoustic scoreP (Z(ξ)|w) is computed using the statistical models of the recognizer and the language

scoreP (w) is computed from a language model.

Our goal is to find the parameter vectorξ for optimal recognition performance. One logical approach

to doing so is to choose the array parameters that maximize the likelihood of the correct transcription

of the utterance that was spoken. This will increase the difference between the likelihood score of the

correct transcription and the scores of competing incorrect hypotheses, and thus, increase the probability

that the correct transcription will be hypothesized.

For the time being, let us assume that the correct transcription of the utterance, which we notate aswC ,

is known. We can then maximize (3) for the array parametersξ. Because the transcription is assumed to

be knowna priori, the language scoreP (wC) can be neglected. The maximum likelihood (ML) estimate

of the array parameters can now be defined as the vector that maximizes the acoustic log-likelihood of

the given sequence of words, expressed as

ξ̂ = argmax
ξ

log (P (Z(ξ)|wC)) (4)

In an HMM-based speech recognition system, the acoustic likelihoodP (Z(ξ)|wC) is computed as

the total likelihood of all possible state sequences through the HMM for the sequence of words in the

transcriptionwC . However, many of these sequences are highly unlikely. For computational efficiency,

we assume that the likelihood of a given transcription is largely represented by the single most likely

HMM state sequence. IfSC represents the set of all possible state sequences through this HMM ands

represents one such state sequence, then the ML estimate ofξ can be written as

ξ̂ = argmax
ξ,s∈SC

{∑

i

log(P (zi(ξ)|si)) +
∑

i

log(P (si|si−1, wC))

}
(5)

According to (5), in order to find̂ξ, the likelihood of the correct transcription must bejointly optimized

with respect to both the array parameters and the state sequence. This joint optimization can be performed

by alternately optimizing the state sequence and the array processing parameters in an iterative manner.
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A. Optimizing the State Sequence

Given a set of array parametersξ, the speech can be processed by the array and a sequence of feature

vectorsZ(ξ) produced. Using the features vectors and the transcriptionwC , we want to find the state

sequencês = {ŝ1, ŝ2, . . . , ŝT } such that

ŝ = argmax
s∈SC

∑

i

log(P (si|si−1,wC ,Z(ξ))) (6)

This state sequencês can be easily determined by forced alignment using the Viterbi algorithm [10].

B. Optimizing the Array Parameters

Given a state sequence,ŝ, we are interested in findinĝξ such that

ξ̂ = argmax
ξ

∑

i

log(P (zi(ξ)|ŝi)) (7)

This acoustic likelihood expression cannot be directly maximized with respect to the array parameters

ξ for two reasons. First, the state distributions used in most HMM-based speech recognition systems are

complicated density functions,i.e mixtures of Gaussians. Second, the acoustic likelihood of an utterance

and the parameter vectorξ are related through a series of linear and non-linear mathematical operations

performed to convert a waveform into a sequence of feature vectors. Therefore, for a given HMM state

sequence, no closed-form solution for the optimal value ofξ exists. As a result, non-linear optimization

methods must be used.

We employ a gradient-based approach to finding the optimal value ofξ. For convenience, we define

L(ξ) to be the total log likelihood of the observation vectors given an HMM state sequence. Thus,

L(ξ) =
∑

i

log(P (zi(ξ)|si)) (8)

Using the definition ofξ given by (2), we define the gradient vector∇ξL(ξ) as

∇ξL(ξ) =
[

∂L(ξ)
∂h0[0]

,
∂L(ξ)
∂h0[1]

, . . . ,
∂L(ξ)

∂hM−1[P − 1]

]T

(9)

Clearly, the computation of the gradient vector is dependent on the form of the HMM state distributions

used by the recognition system and the features used for recognition. In the following sections, we derive

the gradient expressions when the state distributions are modeled as Gaussian distributions or mixtures

of Gaussians. In both cases, the features are assumed to be mel frequency cepstral coefficients (MFCC)

or log mel spectra.
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1) Gaussian State Output Distributions:We now derive the expression for∇ξL(ξ) for the case where

the HMM state distributions are multivariate Gaussian distributions with diagonal covariance matrices. If

we defineµi andΣi to be the mean vector and covariance matrix, respectively, of the pdf of the most

likely HMM state at framei, the total log likelihood for an utterance can be expressed as

L(ξ) =
∑

i

{
−1

2
(zi(ξ)− µi)

T Σ−1
i (zi(ξ)− µi) + κi

}
(10)

whereκi is a normalizing constant. Using the chain rule, the gradient ofL(ξ) with respect toξ can be

expressed as

∇ξL(ξ) = −
∑

i

∂zi(ξ)
∂ξ

Σ−1
i (zi(ξ)− µi) (11)

where ∂zi(ξ)/∂ξ is the Jacobian matrix, composed of the partial derivatives of each element of the

feature vector at framei with respect to each of the array parameters. The Jacobian is of dimension

MP × L whereM is the number of microphones,P is the number of parameters per microphone, and

L is the dimension of the feature vector.

It can be shown that for log mel spectral feature vectors, the elements of the Jacobian matrix can be

expressed as

∂zl
i

∂hm[p]
= 2

1
M l

i

N/2∑

k=0

V l[k]< (Xmp
i [k]Y ∗

i [k]) (12)

whereYi[k] is the DFT of framei of the output signaly[n], Xmp
i [k] is the DFT of the signal captured by

microphonem, beginningp samples prior to the start of framei, V l[k] is the value of thelth mel filter

applied to DFT bink, andM l
i is the lth mel spectral component in framei. The size of the DFT isN

and∗ denotes complex conjugation. Note that in (12), we have assumed that Time-Delay Compensation

(TDC) has already been performed and that the microphone signalsxm[n] have already been time-aligned.

If optimization of the filter parameters is performed using MFCC features rather than log mel spectra,

(12) must be modified slightly to account for the additional DCT operation. The full derivation of the

Jacobian matrix for log mel spectral or cepstral features can be found in [11].

2) Mixture of Gaussians State Output Distributions:Most state-of-the-art recognizers do not model

the state output distributions as single Gaussians but rather as mixtures of Gaussians. It can be shown [11]

that when the HMM state distributions are modeled as mixtures of Gaussians, the gradient expression

can be expressed as

∇ξL(ξ) = −
∑

i

K∑

k=1

γik(ξ)
∂zi(ξ)

∂ξ
Σ−1

ik (zi(ξ)− µik) (13)

whereγik(ξ) represents thea posterioriprobability of thekth mixture component of statesi, givenzi(ξ).
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Comparing (11) and (13), it is clear that the gradient expression in the Gaussian mixture case is simply

a weighted sum of the gradients of each of the Gaussian components in the mixture, where the weight on

each mixture component represents itsa posterioriprobability of generating the observed feature vector.

C. Optimizing Log Mel Spectra vs. Cepstra

Array parameter optimization is performed in the log mel spectral domain, rather than the cepstral

domain. Because the log mel spectra are derived from the energy using a series of triangular weighting

functions of unit area, all components of the vectors have approximately the same magnitude. In contrast,

the magnitude of cepstral coefficients decreases significantly with increasing cepstral order. When there

is a large disparity in the magnitudes of the components of a vector, the larger components dominate the

objective function and tend to be optimized at the expense of smaller components in gradient-descent-

based optimization methods. Using log mel spectra avoids this potential problem.

In order to perform the array parameter optimization in the log mel spectral domain but still perform

decoding using mel frequency cepstral coefficients (MFCC), we employ a parallel set of HMMs trained on

log mel spectra, rather than cepstra. To obtain parallel models, we employed the Statistical Re-estimation

(STAR) algorithm [12], which ensures that the two sets of models have identical frame-to-state alignments.

These parallel log mel spectral models were trained without feature mean normalization, since mean

normalization is not incorporated into the optimization framework (we will revisit this issue in Section VI).

D. Gradient-based Array Parameter Optimization

Using the gradient vector defined in either (11) or (13), the array parameters can be optimized using

conventional gradient descent [13]. However, improved convergence performance can be achieved by

other methods,e.g. those which utilize estimates of the Hessian. In this work, we perform optimization

using the method of conjugate gradients [14], using the software package found in [15]. In this method,

the step size varies with each iteration and is determined by the optimization algorithm itself.

IV. LIMABEAM I N PRACTICE

In the previous section, a new approach to microphone array processing was presented in which

the array processing parameters are optimized specifically for speech recognition performance using

information from the speech recognition system itself. Specifically, we showed how the parameters of

a filter-and-sum beamformer can be optimized to maximize the likelihood of a known transcription.

Clearly, we are faced with a paradox: prior knowledge of the correct transcription, is required in order
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Fig. 2. Flowcharts of Calibrated LIMABEAM and Unsupervised LIMABEAM. In Calibrated LIMABEAM, the parameters of

the filter-and-sum beamformer are optimized using a calibration utterance with a known transcription and then fixed for future

processing. In Unsupervised LIMABEAM, the parameters are optimized for each utterance independently using hypothesized

transcriptions.

to maximize its likelihood, but if we had such knowledge, there would be no need for recognition in the

first place. In this section we present two different implementations of LIMABEAM as solutions to this

paradox. The first method is appropriate for situations in which the environment and the user’s position

do not vary significantly over time, such as in a vehicle or in front of a desktop computer terminal, while

the second method is more appropriate for time-varying environments.

A. Calibrated LIMABEAM

In this approach, the LIMABEAM algorithm is cast as a method of microphone array calibration. In

the calibration scenario, the user is asked to speak an enrollment utterance with aknown transcription.

An estimate of the most likely state sequence corresponding to the enrollment transcription is made via

forced alignment using the features derived from the array signals. These features can be generated using

an initial set of filters,e.g. from a previous calibration session or a simple delay-and-sum configuration.

Using this estimated state sequence, the filter parameters can be optimized. Using the optimized filter
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parameters, a second iteration of calibration can be performed. An improved set of features for the

calibration utterance is generated and used to re-estimate the state sequence. The filter optimization

process can then be repeated using the updated state sequence. The calibration process continues in an

iterative manner until the overall likelihood converges. Once convergence occurs, the calibration process

is complete. The resulting filters are now fixed and used to process future incoming speech to the array.

Because the array parameters are calibrated to maximize the likelihood of the enrollment utterance, we

refer to this method asCalibrated LIMABEAM. A flowchart of the calibration algorithm is shown in

Figure 2(a).

B. Unsupervised LIMABEAM

In order for the proposed calibration algorithm to be effective, the array parameters learned during

calibration must be valid for future incoming speech. This implies that there will not be any significant

changes over time to the environment or the user’s position. While this is a reasonable assumption for

several situations, there are several applications in which either the environment or the position of the user

do vary over time. In these cases, filters obtained from calibration may no longer be valid. Furthermore,

there may be situations in which requiring the user to speak a calibration utterance is undesirable. For

example, a typical interaction at an information kiosk is relatively brief and requiring the user to calibrate

the system will significantly increase the time it takes for the user to complete a task.

In these situations, it is more appropriate to optimize the array parameters more frequently,i.e. on an

utterance-by-utterance basis. However, we are again faced with the paradox discussed earlier. In order to to

maximize the likelihood of the correct transcription of the test utterances, we requirea priori knowledge

of the very transcriptions that we desire to recognize. In this case, where the use of a calibration utterance

is no longer appropriate, we solve this dilemma by estimating the transcriptions and using them in an

unsupervisedmanner to perform the array parameter optimization.

In Unsupervised LIMABEAM, the filter parameters are optimized on the basis of a hypothesized

transcription, generated from an initial estimate of the filter parameters. Thus, this algorithm is a multi-

pass algorithm. For each utterance or series of utterances, the current set of filter parameters are used to

generate a set of features for recognition which in turn, are used to generate a hypothesized transcription.

Using the hypothesized transcription and the associated feature vectors, the most likely state sequence

is estimated using Viterbi alignment as before. The filters are then optimized using the estimated state

sequence, and a second pass of recognition is performed. This process can be iterated until the likelihood

converges. A flowchart of the algorithm is shown in Figure 2(b).
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V. EXPERIMENTAL EVALUATION

In order to evaluate the proposed Calibrated LIMABEAM and Unsupervised LIMABEAM algorithms,

we employed the CMU WSJ PDA corpus, recorded at CMU. This corpus was recorded using a PDA

mockup, created with a Compaq iPaq outfitted with 4 microphones using a custom-made frame attached

to the PDA. The microphones were placed in a 5.5 cm× 14.6 cm rectangular configuration, as shown

in Figure 3. The 4 microphones plus a close-talking microphone worn by the user were connected to a

digital audio multi-track recorder. The speech data was recorded at a sampling rate of 16 kHz.

Recordings were made in a room approximately 6.0 m× 3.7 m× 2.8 m. The room contained several

desks, computers and a printer. The reverberation time of the room was measured to be approximately 270

ms. Users read utterances from the Wall Street Journal (WSJ0) test set [16] which were displayed on the

PDA screen. All users sat in a chair in the same location in the room and held the PDA in whichever hand

was most comfortable. No instructions were given to the user about how to hold the PDA. Depending

on the preference or habits of the user, the position of the PDA could vary from utterance-to-utterance

or during a single utterance.

Two separate recordings of the WSJ0 test set were made with 8 different speakers in each set. In the

first set, referred to asPDA-A, the average SNR of the array channels is approximately 21 dB. In the

second recording session, a humidifier was placed near the user to create a noisier environment. The

SNR of the second set, referred to asPDA-B, is approximately 13 dB.

Speech recognition was performed using Sphinx-3, a large-vocabulary HMM-based speech recognition

system [17]. Context-dependent 3-state left-to-right HMMs with no skips (8 Gaussians/state) were trained

using the speaker-independent WSJ training set, consisting of 7000 utterances. The system was trained

with 39-dimensional feature vectors consisting of 13-dimensional MFCC parameters, along with their

delta and delta-delta parameters. A 25-ms window length and a 10-ms frame shift were used. Cepstral

mean normalization (CMN) was performed in both training and testing.

A. Experiments Using Calibrated LIMABEAM

The first series of experiments were performed to evaluate the performance of Calibrated LIMABEAM

algorithm. In these experiments, a single calibration utterance for each speaker was chosen at random

from utterances at least 10 s in duration. For each speaker, delay-and-sum beamforming was performed on

the calibration utterance and recognition features were generated from the delay-and-sum output signal.

These features and the known transcription of the calibration utterance were used to estimate the most

likely state sequence via forced alignment. Using this state sequence, a filter-and-sum beamformer with
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Fig. 3. A 4-microphone PDA mockup used to record the CMU WSJ PDA corpus.

20 taps per filter was optimized. In all cases, the steering delays were estimated using the PHAT method

[18] and the filters were initialized to a delay-and-sum configuration for optimization. The filters obtained

were then used to process all remaining utterances for that speaker.

Experiments were performed using both 1 Gaussian per state and 8 Gaussians per state in the log-

likelihood expression used for filter optimization. The results of these experiments are shown in Figure 4(a)

and Figure 4(b) for the PDA-A and PDA-B test sets, respectively. For comparison, the results obtained

using only a single microphone from the array and using conventional delay-and-sum beamforming

are also shown. The Generalized Sidelobe Canceller (GSC) algorithm ( [2]) with parameter adaptation

during the non-speech regions only (as per [4]) was also performed on the PDA data. The recognition

performance was significantly worse than delay-and-sum beamforming and therefore the results are not

reported here.

As the figures show, the calibration approach is, in general, successful at improving the recognition ac-

curacy over delay-and-sum beamforming. On the less noisy PDA-A test data, using mixtures of Gaussians

in the likelihood expression to be optimized resulted in a significant improvement over conventional delay-

and-sum processing, whereas the improvement using single Gaussians is negligible. On the other hand,

the improvements obtained in the noisier PDA-B set are substantial in both cases and the performance

is basically the same. While it is difficult to compare results across the two test sets directly because

the speakers are different in each set, the results obtained using single Gaussians versus mixtures of

Gaussians generally agree with intuition. When the test data are well matched to the training data,i.e.

same domain and distortion, using more descriptive models is beneficial. As the mismatch between the
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Fig. 4. Word Error Rate obtained using Calibrated LIMABEAM on the CMU WSJ PDA-A and PDA-B corpora. The figures show

the performance obtained using a single microphone, delay-and-sum beamforming, and the proposed Calibrated LIMABEAM

method with 1 Gaussian per state or 8 Gaussians per state in the optimization. The performance obtained using a close-talking

microphone is also shown.

training and test data increases,e.g. the SNR decreases, more general models give better performance.

Comparing Figure 4(a) and Figure 4(b), there is a significant disparity in the relative improvement

obtained on the PDA-A test set compared with the PDA-B test set. A 12.7% relative improvement over

delay-and-sum beamforming was obtained in the PDA-A test set, while the improvement on PDA-B

was 24.6%. As described above, the users were not told to keep the PDA in the same position from

utterance to utterance. The users in this corpus each read approximately 40 utterances while holding the

PDA in their hand. Therefore, we can expect some movement will naturally occur. As a result, the filter

parameters obtained from calibration using an utterance chosen at random may not be valid for many of

the utterances from that user. We re-examine this hypothesis in the next section, where the parameters

are adjusted for each utterance individually using the unsupervised approach.

Finally, the experimental procedure described constitutes a single iteration of the Calibrated LIMABEAM

algorithm. Performing additional iterations did not result in any further improvement.

B. Experiments Using Unsupervised LIMABEAM

A second series of experiments was performed to evaluate the performance of the Unsupervised LIMABEAM

algorithm. In this case, the filter parameters were optimized for each utterance individually in the following

manner. Delay-and-sum beamforming was used to process the array signals in order to generate an initial

hypothesized transcription. Using this hypothesized transcription and the features derived from the delay-
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Fig. 5. Word Error Rate obtained using Unsupervised LIMABEAM on the CMU WSJ PDA-A and PDA-B corpora.

The figures show the performance obtained using a single microphone, delay-and-sum beamforming, and the proposed

Unsupervised LIMABEAM method with 1 Gaussian per state or 8 Gaussians per state in the optimization. The performance

obtained using a close-talking microphone is also shown.

and-sum output, the state sequence was estimated via forced alignment. Using this state sequence, the

filter parameters were optimized. As in the calibrated case, 20 taps were estimated per filter and the filters

were initialized to a delay-and-sum configuration. We again compared the recognition accuracy obtained

when optimization is performed using HMM state output distributions modeled as Gaussians or mixtures

of Gaussians. The results are shown in Figure 5(a) and Figure 5(b) for PDA-A and PDA-B, respectively.

There is sizable improvement in recognition accuracy over conventional delay-and-sum beamforming

in both test sets. Using Unsupervised LIMABEAM, an average relative improvement of 31.4% was

obtained over delay-and-sum beamforming over both test sets. It is interesting to note that by comparing

Figure 4(a) and Figure 5(a), we can see a dramatic improvement in performance using the unsupervised

method, compared to that obtained using the calibration algorithm. This confirms our earlier conjecture

that the utterance used for calibration was not representative of the data in the rest of the test set, possibly

because the position of the PDA with respect to the user varied over the course of the test set.

Additionally, we can also see that the effect of optimizing using Gaussian mixtures versus single

Gaussians in the unsupervised case is similar to that seen in the calibration experiments. As the mismatch

between training and testing conditions increases, better performance is obtained from the more general

single Gaussian models. As in the calibration case, these results were obtained from only a single iteration

of Unsupervised LIMABEAM, and additional iterations did not improve the performance further.
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TABLE I

WER OBTAINED ON PDA-A USING UNSUPERVISEDLIMABEAM AND AN OPTIMIZED SINGLE-CHANNEL POST-FILTER

APPLIED TO THE OUTPUT OF A DELAY-AND-SUM BEAMFORMER.

Processing Method Filter Length WER (%)

Delay-and-sum – 20.3

Unsupervised ML post-filter 20 20.1

Unsupervised ML post-filter 80 18.4

Unsupervised LIMABEAM 20 13.9

C. LIMABEAM vs. Sum-and-Filter Processing

There is another class of methods for microphone array processing which can be referred to assum-

and-filter methods. In such methods, the array signals are processed using conventional delay-and-sum

beamforming or another array processing algorithm and the single-channel output signal is then passed

through apost-filter for additional spectral shaping and noise removal [19], [20].

We performed a series of experiments to compare the performance of the proposed maximum likelihood

filter-and-sum beamformer to that of a single-channel post-filter optimized according to the same maxi-

mum likelihood criterion and applied to the output of a delay-and-sum beamformer. For these experiments,

the parameters of both the filter-and-sum beamformer and the single-channel post-filter were optimized

using Unsupervised LIMABEAM with single-Gaussian HMM state output distributions. For the filter-

and-sum beamformer, 20-tap filters were estimated as before. For the post-filtering, filters with 20 taps

and 80 taps were estimated, the latter being the same number of total parameters used in the filter-and-sum

case.

The results of these experiments are shown in Table I. As the table shows, jointly optimizing the

parameters of a filter-and-sum beamformer provides significantly better speech recognition performance

compared to optimizing the parameters of a single-channel post-filter.

D. Incorporating TDC Into LIMABEAM

In the filter-and-sum equation shown in (1), the steering delays were shown explicitly asτm and in

the experiments performed thus far, we estimated those delays and performed TDC prior to optimizing

the filter parameters of the beamformer. Thus, at the start of LIMABEAM, the microphone array signals

are all in phase. However, because TDC is simply a time-shift of the input signals, it can theoretically

be incorporated into the filter optimization process. Therefore it is possible that we can do away with
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TABLE II

WER OBTAINED ON PDA-B USING BOTH LIMABEAM METHODS WITH AND WITHOUT TIME-DELAY COMPENSATION

(TDC) PRIOR TO BEAMFORMER OPTIMIZATION.

Array Processing Method TDC WER (%)

Delay-and-sum Yes 58.9

Calibrated LIMABEAM Yes 44.4

Calibrated LIMABEAM No 45.7

Unsupervised LIMABEAM Yes 39.5

Unsupervised LIMABEAM No 39.8

the TDC step and simply let the LIMABEAM algorithm implicitly learn the steering delays as part of

the filter optimization process.

To test this, we repeated the Calibrated LIMABEAM and Unsupervised LIMABEAM experiments on

the PDA-B test set. We compared the performance of both algorithms with and without TDC performed

prior to filter parameter optimization. In the case where TDC was not performed, the initial set of

features required by LIMABEAM for state-sequence estimation was obtained by simply averaging the

array signals together without any time alignment. The results of these experiments are shown in Table II.

As the results in the table show, there is very little degradation in performance when the TDC is

incorporated into the filter optimization process. It should be noted that in these experiments, because

the users held the PDA, they were never significantly off-axis to the array. Therefore there was not

a significant difference between the initial features obtained from delay-and-sum and those obtained

from averaging the unaligned signals together. In situations where the user is significantly off-axis, initial

features obtained from simple averaging without TDC may be noisier than those obtained after TDC. This

may degrade the quality of the state-sequence estimation, which may, in turn, degrade the performance

of the algorithm. In these situations, performing TDC prior to filter parameter optimization is preferable.

VI. OTHER CONSIDERATIONS

A. Combining the LIMABEAM Implementations

In situations where Calibrated LIMABEAM is expected to generate improved recognition accuracy,

the overall performance can be improved further by performing Calibrated LIMABEAM and Unsu-

pervised LIMABEAM sequentially. As is the case with all unsupervised processing algorithms, the

performance of Unsupervised LIMABEAM is dependent on the accuracy of the data used for adaptation.
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By performing Calibrated LIMABEAM prior to Unsupervised LIMABEAM, we can use the calibration

method as a means of obtaining more reliable transcriptions to use in the unsupervised optimization.

To demonstrate the efficacy of this approach, an experiment was performed using the PDA-B test set in

which Unsupervised LIMABEAM was performed using transcriptions generated by Calibrated LIMABEAM

rather than by delay-and-sum beamforming as before. Recalling Figure 4(b), Calibrated LIMABEAM

generated a 24.6% relative improvement over delay-and-sum processing on the PDA-B test set. By

performing Unsupervised LIMABEAM using the transcriptions generated by the calibrated beamformer

rather than by delay-and-sum beamforming, the Word Error Rate (WER) was reduced from 42.8% to

37.9%. For comparison, the WER obtained from delay-and-sum beamforming was 58.9%.

B. Data Sufficiency for LIMABEAM

One important factor to consider when using either of the two LIMABEAM implementations described

is the amount of speech data used in the filter optimization process. If too little data are used for

optimization or the data are unreliable, then the filters produced by the optimization process will be

sub-optimal and could potentially degrade recognition accuracy.

In Calibrated LIMABEAM, we are attempting to obtain filters that generalize to future utterances

using a very small amount of data (only a single utterance). As a result, if the beamformer contains

too many parameters, the likelihood of overfitting is quite high. For example, experiments performed on

an 8-channel microphone array in [11] showed that a 20-tap filter-and-sum beamformer can be reliably

calibrated with only 3-4 s of speech. However, when the filter length is increased to 50 taps, overfitting

occurs and recognition performance degrades. When 8-10 s of speech data are used, the 50-tap filters

can be calibrated successfully and generate better performance than the 20-tap filters calibrated on the

same amount of data.

For Unsupervised LIMABEAM to be successful, there has to be a sufficient number of correctly labeled

frames in the utterance. Performing unsupervised optimization on an utterance with too few correctly

hypothesized labels will only degrade performance, propagating the recognition errors further.

C. Incorporating Feature Mean Normalization

Speech recognition systems usually perform better when mean normalization is performed on the

features prior to being processed by the recognizer, both in training and decoding. Mean normalization

can easily be incorporated into the filter parameter optimization scheme by performing mean normalization

on both the features and the Jacobian matrix in the likelihood expression and its gradient.
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TABLE III

WER OBTAINED BY APPLYING UNSUPERVISEDMLLR AFTER ARRAY PROCESSING ON THEPDA-B TEST SET.

Processing Method WER (%)

Delay-and-sum 58.9

Delay-and-sum + MLLR 44.7

Calibrated LIMABEAM 44.4

Calibrated LIMABEAM + MLLR 40.8

However, we found no additional benefit to incorporating feature mean normalization into the array

parameter optimization process. We believe this is because the array processing algorithm is already

attempting to perform some degree of channel compensation for both the room responseand the micro-

phone channel, as it is impossible to separate the two.

D. Applying Additional Robustness Techniques

There is a vast literature of techniques designed to improve speech recognition accuracy under adverse

conditions, such as additive noise and/or channel distortion. These algorithms typically operate in the

feature space,e.g.Codeword-Dependent Cepstral Normalization (CDCN) [21], or the model space,e.g.

Maximum Likelihood Linear Regression (MLLR) [22].

We have found that applying such techniques after LIMABEAM results in further improvements in

performance. For example, Table III shows the WER obtained when batch-mode unsupervised MLLR with

a single regression class is applied after delay-and-sum beamforming and after Calibrated LIMABEAM

for the PDA-B test set.

As the table shows, performing unsupervised MLLR after delay-and-sum beamforming results in

recognition accuracy that is almost as good as Calibrated LIMABEAM alone. However, when MLLR

is applied after Calibrated LIMABEAM, an additional 10% reduction in WER is obtained. It should

also be noted that in this experiment, the MLLR parameters were estimated using the entire test set,

while the parameters estimated by Calibrated LIMABEAM were estimated from only a single utterance.

Furthermore, by comparing these results to those shown in Table II, we can see that the performance

obtained by applying MLLR to the output of delay-and-sum beamforming is still significantly worse than

that obtained by Unsupervised LIMABEAM alone.
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VII. SUMMARY AND CONCLUSIONS

In this paper, we introduced Likelihood-Maximizing Beamforming (LIMABEAM), a novel approach

to microphone array processing designed specifically for improved speech recognition performance. This

method differs from previous array processing algorithms in that no waveform-level criteria are used to

optimize the array parameters. Instead, the array parameters are chosen to maximize the likelihood of

the correct transcription of the utterance, as measured by the statistical models used by the recognizer

itself. We showed that finding a solution to this problem involves jointly optimizing the array parameters

and the most likely state sequence for the given transcription and described a method for doing so.

We then developed two implementations of LIMABEAM which optimized the parameters of a filter-

and-sum beamformer. In the first method, called Calibrated LIMABEAM, an enrollment utterance with

a known transcription is spoken by the user and used to optimize the filter parameters. These filter

parameters are then fixed and used to process future utterances. This algorithm is appropriate for situations

in which the environment and the user’s position do not vary significantly over time. For time-varying

environments, we developed an algorithm for optimizing the filter parameters in an unsupervised manner.

In Unsupervised LIMABEAM, the optimization is performed on each utterance independently using a

hypothesized transcription obtained from an initial pass of recognition.

The performance of these two LIMABEAM methods was demonstrated using a microphone-array-

equipped PDA. In the Calibrated LIMABEAM method, we were able to obtain an average relative

improvement of 18.6% over conventional beamforming, while the average relative improvement obtained

using Unsupervised LIMABEAM was 31.4%. We were able to improve performance further still by

performing Calibrated LIMABEAM and Unsupervised LIMABEAM in succession, and also by applying

HMM adaptation after LIMABEAM.

The experiments performed in this paper showed that we can obtain significant improvements in

recognition accuracy over conventional microphone array processing approaches in environments with

moderate reverberation over a range of SNRs. However, in highly reverberant environments, an increased

number of parameters is needed in the filter-and-sum beamformer to effectively compensate for the

reverberation. As the number of parameters to optimize increases, the data insufficiency issues discussed

in Section VI begin to emerge more significantly, and the performance of LIMABEAM suffers. To address

these issues and improve speech recognition accuracy in highly reverberant environments, we have begun

developing a subband filtering implementation of LIMABEAM.
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