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Abstract

Speech recognition systems perform poorly in the presence of corrupting noise. Missing feature
methods attempt to compensate for the noise by removing noise corrupted components of spec-
trographic representation of noisy speech and performing recognition with the remaining reliable
components. Conventional classifier-compensation methods modify the recognition system to
work with the incomplete representations so obtained. This contrains them to perform recog-
nition using spectrographic features which are known to be less optimal than cepstra. In this
paper we present two missing-features algorithms that reconstruct complete spectrograms from
incomplete noisy ones. Cepstral vectors can now be derived from the reconstructed spectrograms
for recognition. The first algorithm uses MAP procedures to estimate corrupt components from
their correlations with reliable components. The second algorithm clusters spectral vectors of
clean speech. Corrupt components of noisy speech are estimated from the distrubition of the
cluster that the analysis frame is identified with. Experiments show that, although conventional
classifier-compensation methods are superior when recognition is performed with spectrographic
features, cepstra derived from the reconstructed spectrograms result in better recogntion perfor-
mance overall. The proposed methods are also less expensive computationally and do not require
modification of the recognizer.
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ABSTRACT

Speech recognition systems perform poorly in the presence of corrupting noise. Missing feature meth-

ods attempt to compensate for the noise by removing noise corrupted components of spectrographic repre-

sentations of noisy speech and performing recognition with the remaining reliable components.

Conventional classifier-compensation methods modify the recognition system to work with the incomplete

representations so obtained. This constrains them to perform recognition using spectrographic features

which are known to be less optimal than cepstra. In this paper we present two missing-feature algorithms

that reconstruct complete spectrograms from incomplete noisy ones. Cepstral vectors can now be derived

from the reconstructed spectrograms for recognition. The first algorithm uses MAP procedures to estimate

corrupt components from their correlations with reliable components. The second algorithm clusters spec-

tral vectors of clean speech. Corrupt components of noisy speech are estimated from the distribution of the

cluster that the analysis frame is identified with. Experiments show that, although conventional classifier-

compensation methods are superior when recognition is performed with spectrographic features, cepstra

derived from the reconstructed spectrograms result in better recognition performance overall. The pro-

posed methods are also less expensive computationally and do not require modification of the recognizer.
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1. INTRODUCTION

Automatic speech recognition (ASR) systems perform poorly when the speech to be recognized is cor-

rupted by noise, especially when the system has been trained on clean speech. Several algorithms have

been proposed in the literature to compensate for the effects of noise on ASR systems. Most of these algo-

rithms attempt to characterize the noise and model its effects on the speech signal explicitly (e.g. Varga and

Moore, 1990; Acero, 1993; Gales and Young, 1996; Moreno 1996) in order to compensate for it. The per-

formance of these algorithms is usually critically dependent on the ability to measure the noise characteris-

tics accurately, and they frequently fail to be effective when such measurement is difficult, such as when

the noise is non-stationary (Raj, Parikh and Stern, 1997). 

In the mid-1990s researchers at the university of Sheffield proposed an alternative approach to noise

compensation, the missing feature approach, that is based on exploitation of the inherent redundancy in the

speech signal, rather than on explicit characterization of the noise (Cooke, Green and Crawford, 1994).

Speech signals have a large degree of redundancy built into them. For instance, speech that has been either

high-pass filtered, or low-pass filtered with a cutoff frequency of 1800Hz remains perfectly intelligible

(Fletcher, 1953). Similarly, speech that has undergone excision of spectral bands (Warren, Reiner, Bash-

ford and Brubaker, 1995) or short temporal regions (Miller and Licklider, 1950) remains intelligible.

Hence, one may hope to recognize speech effectively using only a fraction of the spectro-temporal infor-

mation in the speech signal. To exploit this fact, missing feature methods represent speech using spectro-

graphic time-frequency representations (that we will refer to as spectrograms in this paper), that consist of

sequences of power spectral or log spectral vectors (which we generically refer to as spectral vectors in the

rest of this paper). When the speech is corrupted by noise, some of the time-frequency components of this

representation are more corrupted than others. The missing feature approach deems low-SNR time-fre-

quency components as unreliable, and recognition is performed using only the remaining reliable compo-

nents. The unreliable components are thus effectively assumed to be missing, and only the incomplete

spectrographic information represented by the reliable components is assumed to be available. 

In the two original algorithms proposed by the Sheffield group, recognition was performed by HMM-

based recognizers directly with the incomplete spectrographic information from the reliable time-fre-

quency components (Cooke, Morris and Green, 1997). Since conventional HMM-based recognizers can-
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not perform recognition with incomplete representations, their algorithms modified the manner in which

state output probabilities were computed within the recognizer. In the first algorithm, referred to as state-

based imputation, computation of the output probability of any spectral vector, for any state, is accom-

plished by replacing unreliable components of the vector by maximum a posteriori (MAP) or minimum

mean squared error (MMSE) estimates obtained from the reliable time-frequency components, computed

from the distribution of that state. In the second algorithm, referred to as marginalization, the unreliable

components are integrated out of the state output distributions. This latter approach is equivalent to the

optimal classifier or recognizer, given the incomplete data. Later improvements to the algorithms incorpo-

rated the assumption that the value of any unreliable time-frequency component represents an upper bound

on the true value of that component, i.e. the value that component would have had in the absence of cor-

rupting noise, when the noise is additive and uncorrelated to the speech. This places an upper bound on the

estimates of the unreliable components for state-based imputation (Josifovski, Cooke, Green and Vizinho,

1999). For marginalization, this places an upper limit on the integral that must be computed to marginalize

out unreliable components from class distributions (Cooke, Green, Josifovski and Vizinho, 2001). Since

these methods modify the recognizer itself, we refer to them as classifier-compensation methods in this

paper.

While both state-based imputation and marginalization have been shown to be extremely effective in

compensating for noise, they suffer from several drawbacks. For them to be applicable, the state output

distributions of the recognizer must represent the distributions of the spectral vectors where the reliable

and unreliable components are identified. Recognition must therefore be performed with spectral vectors.

However, speech recognition performance obtained using cepstral vectors has been found to be signifi-

cantly superior to that obtained with spectral vectors (Davis and Mermelstein, 1980). It is infeasible to per-

form state-based imputation or marginalization effectively on cepstra-based recognizers since the

distributions of spectral vectors cannot be derived from those of the lower-dimensional cepstral vectors.

Another important drawback is that the recognizer must be modified to implement these algorithms. As a

result, they can only be used in situations where one has access to the internals of the recognizer. There are

other, less serious, problems as well. Utterance-level pre-processing steps, such as mean and variance nor-

malization, that are known to improve recognition performance, cannot be performed with incomplete

spectrographic data. The use of difference and double difference features, though possible, becomes more
4



difficult, and less effective. All these problems arise from the fact that these are classifier-compensation

methods that attempt to perform recognition directly with the incomplete spectrograms, modifying the rec-

ognizer to account for the missing components.

In this paper we present two missing-feature algorithms that take an alternative approach: they recon-

struct complete spectrograms from the incomplete ones prior to recognition. To achieve this, the true val-

ues of the unreliable time-frequency components of the spectrogram are estimated from the reliable

components and the known statistical relationships between the various components of the spectrogram.

Cepstral vectors can now be derived from the spectral vectors in the reconstructed spectrograms, for recog-

nition. Utterance level processing such as mean normalization can also be performed. Recognition perfor-

mance with the normalized cepstral vectors so obtained is frequently much better than that obtained by

marginalization, which performs optimal recognition based on incomplete spectral vectors. Equally impor-

tantly, the recognizer itself need not be modified in any manner. This permits the usage of any form of rec-

ognizer, including off-the-shelf commercial recognizers that can take cepstral vectors as input. Since these

algorithms work only on incoming feature vectors, we refer to them as feature-compensation methods.

Feature-compensation missing-feature algorithms have previously been reported by other researchers.

Most algorithms model the distribution of the spectral vectors of clean speech as Gaussian mixtures.

Dupont (1998) and Raj, Singh and Stern (1998) compute a posteriori probabilities of all the Gaussians in

the mixture from the reliable components of spectral vectors, ignoring unreliable components altogether.

These probabilities are then used for MMSE estimation of unreliable components. Renevey (2001) adapts

the parameters of the Gaussians in the mixture to the noise conditions of the speech to be recognized, using

explicit characterizations of the noise distributions. A posteriori probabilities of all Gaussians in the mix-

ture are computed using the modified distributions and used to obtain MMSE estimates of unreliable com-

ponents. 

In contrast, the two algorithms reported in this paper do not require explicit characterization of distri-

butions of the noise. Further, they utilize information from unreliable spectrographic components by

assuming that their observed values are upper bounds on their true values. Correlation-based reconstruc-

tion is based on a simple statistical model that represents the sequence of spectral vectors in the spectro-

gram as the output of a stationary Gaussian random process. A bounded version of the MAP estimation
5



procedure is used to estimate unreliable components, based on the statistical parameters of this process.

Cluster-based reconstruction is based on the more conventional Gaussian mixture representations of the

distributions of clean speech. The reconstruction uses the bounded MAP estimation procedure to obtain

Gaussian specific estimates of unreliable components, which are then combined into a final estimate.

A crucial component of missing feature methods is the identification of unreliable components in the

spectrograms. Several solutions have been proposed for this problem in the literature, (e.g. Cooke et. al.

1994; Cooke, Green, Anderson and Abberley, 1994; Drygajlo and El-Maliki, 1998; Vizinho, Green, Cooke

and Josifovski, 1999; Renevey and Drygajlo, 1999). These methods can be largely categorized into two:

those that are derived from computational auditory scene analysis of the signal, and those that depend in

some manner on tracking or measuring the corrupting noise. In this paper we treat the identification of

noisy components as a Bayesian classification problem. This algorithm does not depend on characteriza-

tions of the distributions of the noise, performing classification based only on features measured from the

noisy signal instead. We only provide a brief outline of the algorithm used in this paper. Additional details

of the algorithm are presented in a companion paper (Seltzer, Raj and Stern, 2003).

The rest of this paper is arranged as follows: in Section 2 we give a brief description of the spectro-

graphic representation used in the missing feature work described in this paper. In Section 3 we define

some notations used in the rest of the paper. In Section 4 we briefly describe conventional state-based

imputation and marginalization. In Section 5 we describe the proposed algorithms, covariance-based

reconstruction and cluster-based reconstruction. In Section 6 we outline the method used to identify noise-

corrupted components of the spectrogram. In Section 7 we describe several experimental results. Finally,

in Section 8 we present our conclusions.

2. SPECTROGRAPHIC REPRESENTATIONS

In all of our work the spectrographic representation used for the speech signal has been the Mel spec-

tral representation (O’Shaugnessy, 1987), or the Mel spectrogram. This consists of a sequence of Mel log-

spectral vectors, each of which represents the frequency warped log spectrum of a short frame of speech,

typically 20 ms wide. Figure 1a shows the Mel spectrogram of a typical clean speech signal.

FIGURE 1 APPROX HERE
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Additive noise affects different regions of the Mel spectrogram differently. Figure 1b shows the Mel

spectrogram of the signal in Figure 1a, when it has been corrupted to 10 dB by white noise. Comparison of

the two figures shows that while some regions are relatively unaffected by the noise, others are badly cor-

rupted. The degree of corruption of any time-frequency component of the spectrogram is dependent on the

SNR of that component. Missing feature methods assume that the effect of the noise is to render all low-

SNR regions unreliable. Thus, all time-frequency components that have an SNR below a particular thresh-

old are assumed to be unreliable. However, the values of these unreliable components are assumed to be

the upper bound on their true values, i.e. the value that they would have had in the absence of corrupting

noise. This is based on the assumption that the noise is additive and uncorrelated to the speech. All time-

frequency components whose SNR lies above the threshold are assumed to be reliable, and good approxi-

mations to their true values. The optimal value of the threshold is different for different missing-feature

methods, and also varies with the global SNR of the noisy signal. In general, however, the threshold –5dB

was empirically found to be close to optimal across a wide variety of SNRs for the methods reported in this

paper, and for state-based imputation. For marginalization, the optimal threshold was found to be 0 dB.

3. NOTATION

Before proceeding, we establish some of the notation and terminology used in the rest of the paper.

Every frame of incoming speech has underlying clean speech that has been corrupted by noise to result in

the observed noisy speech. Corresponding to the  frame of noisy speech, there is a measured noisy spec-

tral vector . The vector  has a set of reliable components, that we arrange into a vector  and

a set of unreliable components, which we arrange into the vector . We refer to  as the unreli-

able component vector of  and to  as the reliable component vector of .  is a union of

the two vectors. We can express the relation between ,  and  as

(1)

where  and  are permutation matrices that select the reliable and unreliable components, respec-

tively, of  and arrange them into  and , the superscripted  represents transposition,

tth

Y t( ) Y t( ) Yr t( )

Yu t( ) Yu t( )

Y t( ) Yr t( ) Y t( ) Y t( )

Y t( ) Yr t( ) Yu t( )

Yr t( ) R t( )Y t( )=

Yu t( ) U t( )Y t( )=

Y t( ) A t( ) Yr t( )TYu t( )T[ ]
T

=

R t( ) U t( )

Y t( ) Yr t( ) Yu t( ) T
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 is a vector constructed by concatenating the transposes of  and , and 

is the permutation matrix that rearranges the components of  to give .

Corresponding to the noisy spectrogram, i.e. the spectrogram of the noisy speech, is a true spectrogram

which is the spectrogram that would have been computed, had the signal not been corrupted by noise. Cor-

responding to each noisy spectral vector  from the noisy spectrogram, there is a true spectral vector

 from the true spectrogram. The components of  that correspond to the reliable and unreliable

components of  can also be arranged into vectors  and .  and . are related to

 and  as follows:

(2)

We refer to the components of  as the unreliably known components of , since their value is not

known, and to  as the unreliably known component vector of . Similarly we refer to the compo-

nents of  as the reliably known components of , and to  as the reliably known component

vector of .

4. CLASSIFIER-COMPENSATION METHODS

In this section we briefly describe how state-based imputation and marginalization modify the compu-

tation of state output probabilities in HMM-based speech recognition systems. Both algorithms have been

well documented in various papers, and we only recapitulate the salient points here for reference. For more

detailed information, the reader is referred to the several papers on the subject (e.g. Lippmann and Carlson,

1997; Cooke et. al. 2001,).

4.1  State-Based Imputation

In most HMM-based systems, state output probabilities are modelled as mixtures of Gaussians. For

any vector  with reliably known component vector  and unreliably known component vector

, the state output probability of a state , , can be expressed as:

Yr t( )TYu t( )T[ ]
T

Yr t( ) Yu t( ) A t( )

Yr t( )TYu t( )T[ ]
T

Y t( )

Y t( )

X t( ) X t( )

Y t( ) Xr t( ) Xu t( ) Xr t( ) Xu t( )

Yr t( ) Yu t( )

Xr t( ) Yr t( )≈

Xu t( ) Yu t( )≤

Xu t( ) X t( )

Xu t( ) X t( )

Xr t( ) X t( ) Xr t( )

X t( )

X t( ) Xr t( )

Xu t( ) s P X t( ) s( )
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(3)

where  represents the  Gaussian in the mixture Gaussian density for ,

with mean vector  and covariance matrix , and  is the mixture weight of the  Gaussian.

For any noisy spectral vector , one would ideally compute the state output probability of the underly-

ing true vector . State-based imputation approximates this as

(4)

where  is an MMSE estimate of  obtained from  and the output distribution of  (Josi-

fovski, et. al., 1999), computed as:

(5)

where  is the permutation matrix that selects unreliable components from  to form  and 

(6)

While other forms of the estimate for  have also been proposed, e.g. Renevey (2001), the basic

principle behind the implementation of the algorithm remains unchanged.

4.2  Marginalization

In marginalization, the unreliable components of the state distributions are simply integrated out of the

state output distributions. State output probabilities are computed as . When

state output densities are modelled by mixtures of Gaussians, the state output density value for state  is

thus computed as

P X t( ) s( ) P Xr t( ) Xu t( ), s( ) cj s, G Xr t( ) Xu t( ) µj s, Θj s,,;,( )
j

∑= =

G Xr t( ) Xu t( ) µj s, Θj s,,;,( ) jth s

µj s, Θj s, cj s, jth

Y t( )

X t( )

P X t( ) s( ) P Yr t( ) X̂u
s t( ), s( ) cj s, G Yr t( ) X̂u

s t( ) µj s, Θj s,,;,( )
j

∑= =

X̂u
s t( ) Xu t( ) Yr t( ) s

X̂u
s t( ) γj s, Y t( )( )U t( )µj s,

j
∑=

U t( ) Y t( ) Yu t( )

γj s, Y t( )( )

cj s, G Yr t( ) Xu t( ) µj s, Θj s,,;,( ) Xu t( )d
∞–

Yu t( )

∫

ck s, G Yr t( ) Xu t( ) µk s, Θk s,,;,( ) Xu t( )d
∞–

Yu t( )

∫
k
∑
---------------------------------------------------------------------------------------------------------=

X̂u
s t( )

P Yr t( ) Xu t( ) Yu t( ) s≤,( )

s
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(7)

5. FEATURE-COMPENSATION METHODS

The methods described in Section 4 modify the recognizer in order to perform recognition with incom-

plete spectrographic information. In this section we present two new feature-compensation algorithms,

correlation-based reconstruction and cluster-based reconstruction, that reconstruct complete spectrograms

from the incomplete ones. These algorithms estimate the true value of the unreliable spectrographic com-

ponents from the reliable components. The simplest method of estimating these values is by simple inter-

polation between the closest reliable components. However, as reported by Raj (2000), simple

interpolation-based reconstruction is ineffective for spectrograms of noisy speech signals. Instead, the

algorithms presented in this section estimate unreliable spectrographic components based on the known

statistical properties of spectral vectors. We describe the algorithms in greater detail in the following sub-

sections.

5.1  Correlation-Based Reconstruction

In correlation-based reconstruction the sequence of spectral vectors that constitute the spectrogram of

a clean speech signal are considered to be the output of a Gaussian wide-sense stationary (WSS) random

process (Papoulis, 1991). All clean speech spectrograms are assumed to be individual observations of the

same process. The assumption of wide-sense stationarity implies that the means of the spectral vectors and

the covariances between components of the spectrogram are independent of their position in the spectro-

gram. If we represent the mean of the  component of the  spectral vector  of an utterance as

, and the covariance between the  component of the  spectral vector  and the 

component of the  spectral vector  as , we have

(8)

P Yr t( ) Xu t( ) Yu t( ) s≤,( ) ck s, G Yr t( ) Xu t( ) µk s, Θk s,,;,( ) Xu t( )d
∞–

Yu t( )

∫
k
∑=

kth tth X t k,( )

µ t k,( ) k1
th t1

th X t1 k1,( ) k2
th

t2
th X t2 k2,( ) c t1 t2 k1 k2, , ,( )

µ t k,( ) E X t k,( )[ ]=
c t1 t2 k1 k2, , ,( ) E X t1 k1,( ) µ t1 k1,( )–( ) X t2 k2,( ) µ t2 k2,( )–( )[ ]=
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where  stands for the expectation operator. The assumption of wide-sense stationarity gives us the fol-

lowing properties for these parameters:

(9)

(10)

In other words, the expected value  of the  component of a spectral vector is not dependent on

where the vector occurs in the spectrogram. Similarly, the covariance between the components of two

spectral vectors depends only on the distance  between the vectors (along the time axis) and not on where

the vectors occur in the spectrogram. The relative covariance  between any two com-

ponents  and  is also dependent only on  and is given by

(11)

The means of the components of the spectral vectors  and the various covariance parameters

 can be learnt from the spectrograms of a training corpus of clean speech. Let  repre-

sent the  component of the  spectral vector from the  training signal. The various mean and cova-

riance values can be estimated as

(12)

Relative covariance values can be computed from the covariance values using Equation (11). The implica-

tion of the assumption of a Gaussian process is that the joint distribution the components of all the spectral

vectors in a sequence of vectors is assumed Gaussian. Consequently, the distribution of any subset of these

components is also Gaussian (Papoulis, 1991). Thus, the estimated mean and covariance values character-

ize the process completely, and no other statistical parameters need be estimated.

E  [ ]

µ t k,( ) µ t1 k,( ) µ k( )= =

c t t τ+ k1 k2, , ,( ) c t1 t1 τ+ k1 k2, , ,( ) c τ k1 k2, ,( )= =

µ k( ) kth

τ

r t1 t1 τ+ k1 k2, , ,( )

X t1 k1,( ) X t1 τ+ k2,( ) τ

r t1 t1 τ+ k1 k2, , ,( ) r τ k1 k2, ,( )
c τ k1 k2, ,( )

c 0 k1 k1, ,( ) c 0 k2 k2, ,( )( )
---------------------------------------------------------------= =

µ k( )

c τ k1 k2, ,( ) Xj t k,( )

kth tth jth

µ k( ) 1
Nj

j
∑
------------ Xj t k,( )

t
∑

j
∑=

c τ k1 k2, ,( ) 1
Nj τ–( )

j
∑
-------------------------- Xj t k1,( ) µ k1( )–( ) Xj t τ+ k2,( ) µ k2( )–( )

t
∑

j
∑=
11



The task of reconstruction is to reconstruct the underlying true spectral vector for every spectral vector

in the noisy spectrogram. Let  be the noisy spectral vector whose true counterpart  must be

reconstructed. As before, let  and  be the unreliable and reliable component vectors of ,

and  and  the corresponding counterparts from .  can be approximated by .

Only  must be estimated to reconstruct  completely. We now construct a neighborhood vector

 from all reliable components of the spectrogram that have a relative covariance greater than a

threshold value with at least one of the components of . Let  be the underlying true value of

. Since all the components of  are reliable, . The joint distribution of 

and  is Gaussian. The parameters of this distribution are the expected value of , , the

expected value of , , the autocorrelation of , , the autocorrelation of ,

, and the cross correlation between  and , . These parameters can all be con-

structed from the mean and covariance terms learnt from the training corpus. Figure 2 demonstrates the

construction of  and  and the parameters of their joint distribution with an example.  is

now estimated as:

FIGURE 2 APPROXIMATELY HERE

(13)

Denoting  as  for simplicity, and using Bayes rule, this can be rewritten as

(14)

We refer to the estimate given by Equation (14) as a bounded MAP estimate. It can be shown that

, the distribution of  conditioned on  being equal to , is a Gaussian

with mean . As shown in Appendix A, the solution to Equation

(14) can be obtained by the following iterative procedure:

Let  and  be the  components of  and  respectively. Let the current

estimate of  be . The estimation procedure can now be stated as follows:

1. Initialize , where  is the total number of components in .

2. For each of the  components

Y t( ) X t( )

Yu t( ) Yr t( ) Y t( )

Xu t( ) Xr t( ) X t( ) Xr t( ) Yr t( )

Xu t( ) X t( )

Yn t( )

Xu t( ) Xn t( )

Yn t( ) Yn t( ) Xn t( ) Yn t( )≈ Xu t( )

Xn t( ) Xu t( ) µu t( )

Xn t( ) µn t( ) Xu t( ) Cuu t( ) Xn t( )

Cnn t( ) Xu t( ) Xn t( ) Cun t( )

Yu t( ) Yn t( ) Xu t( )

X̂u t( ) maxXu
P Xu t( ) Xn t( ) Yn t( )= Xu t( ) Yu t( )≤,( ){ }arg=

Xn t( ) Yn t( )= Yn t( )

X̂u t( ) maxXu
P Xu t( ) Xu t( ) Yu t( )≤, Yn t( )( ){ }arg=

P Xu t( ) Yn t( )( ) Xu t( ) Xn t( ) Yn t( )

µu t( ) Cun t( )Cnn
1– t( ) Yn t( ) µn t( )–( )+

Xu t k,( ) Yu t k,( ) kth Xu t( ) Yu t( )

Xu t k,( ) Xu t k,( )

Xu t k,( ) Yu t k,( ) 1 k K≤ ≤,= K Xu t( )

K
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2a. Compute the MAP estimate

  (15)

This is simply the mean of the Gaussian distribution of , conditioned on the reliable values

 and on all other components of  being equal to their current estimates.

2b. Compute the bounded MAP estimate from the MAP estimate as

(16)

3. If all  estimates have converged, set  to obtain , else go back 
to Step 2.

 is estimated as described above for each spectral vector in the spectrogram. This, combined

with the reliable components, reconstructs the entire spectrogram.

5.2  Cluster-Based Reconstruction

In cluster-based reconstruction, the sequence of spectral vectors in the spectrogram as modelled as the

output of an independent, identically distributed (IID) random process. Unreliable components of spectral

vectors are reconstructed based on their statistical relationships to the reliable components from the same

vector. This is in contrast to the assumptions behind correlation-based reconstruction, where all compo-

nents of the spectrogram were assumed to be correlated and unreliable components of a vector were recon-

structed based on their statistical relationship to reliable components in neighboring vectors as well. 

In cluster-based reconstruction, the spectral vectors of clean speech are assumed to be segregated into

a number of clusters. Each cluster is assumed to have a Gaussian distribution. The distribution of the 

cluster is thus given by

(17)

where  represents an arbitrary vector from the  cluster,  represents the dimensionality of , and 

and  represent the mean vector and covariance matrix of the  cluster, respectively. The overall dis-

tribution of spectral vectors is thus a mixture Gaussian given by

X̃u t k,( ) maxXu t k,( ) P Xu t k,( ) Yn t( ) Xu t j,( ) j j k≠,∀,( ){ }arg=

Xu t k,( )

Yn t( ) Xu t( )

Xu t k,( ) min X̃u t k,( ) Yu t k,( ),( )=

Xu t k,( ) X̂u t k,( ) Xu t k,( )  k∀= Xu t( )

Xu t( )

kth

P X k( ) e
1
2---

X µµµµk–( )TΘk
1– X µµµµk–( )–

2π( )d Θk

------------------------------------------------=

X kth d X µk

Θk kth
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(18)

where  is the a priori probability of the  cluster. The a priori probabilities, means, and covariances

of the clusters must all be learnt from a training corpus. This can be done by explicitly clustering the spec-

tral vectors of the training data using techniques such as the LBG algorithm (Linde, Buzo and Gray, 1980)

or k-means clustering (McQueen, 1967), and estimating the a priori probabilities and the distribution

parameters of the individual clusters thereafter. In this paper, however, we compute all parameters jointly

from the training corpus using the expectation maximization (EM) algorithm (Dempster, Laird and Rubin,

1977). 

FIGURE 3 ABOUT HERE

The parameters learnt from the training data can be used to reconstruct the underlying true spectral

vector for any noisy spectral vector. The unreliably known components of the true spectral vector can be

estimated by determining the cluster to which the vector belongs, and estimating them from the distribu-

tion of that cluster. This concept is illustrated by Figure 3. Identifying the correct cluster for any spectral

vector is a classification problem. As always, this can be errorful, especially since the vectors are noisy and

incomplete. To account for this, we obtain a separate estimate for the unreliable components from the dis-

tribution of each of clusters. This results in as many estimates as there are clusters. The final estimate is a

weighted average of all the estimates, where the weight of any estimate obtained from the distribution of

any cluster is the a posteriori probability of that cluster, given the reliable components of that vector.

Let  represent the noisy vector for which the underlying true vector  must be reconstructed.

The reliably known component vector of , , can be approximated by the reliable component

vector of , . The unreliably known component vector  must be estimated. The estimate

for  obtained from the distribution of the  cluster,  is given by

(19)

P X( ) ckP X k( )
k 1=
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∑
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2π( )d Θk

----------------------------e
1
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K

∑= =

ck kth

Y t( ) X t( )

X t( ) Xr t( )

Y t( ) Yr t( ) Xu t( )

Xu t( ) kth X̂u
k t( )

X̂u
k t( ) maxXu

P Xu t( ) k X, u t( ) Yu t( ) Xr t( ) Yr t( )=,≤( ){ }arg=
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where  is the distribution of , conditioned on 

belonging to the  cluster,  being no greater than , and  being equal to . Using

Bayes’ rule, and representing  simply as , this can be written as

(20)

The operation in Equation (20) represents the bounded MAP estimation procedure described in

Section 5.1. Since all cluster distributions are Gaussian,  is also Gaussian. The mean of

the  cluster, , can be partitioned into the two vectors , the expected value of , and

, which represents the means of the components of . The components of the covariance

matrix of the  cluster, , that correspond to  and  can be separated into  and

 respectively. The cross-correlation between  and ,  can also be derived

from . From these terms, the bounded MAP estimate of  for the  cluster can be obtained using

the procedure described in Section 5.1 and Appendix A. The overall estimate of  is given by

(21)

where  is the a posteriori probability of the  cluster and is given by

(22)

In order to compute the term ,  must be stated explicitly in terms of

the reliably known and unreliably known component vectors of . This gives us

(23)

The term to the right is difficult to compute when  is a Gaussian with non-zero off-diagonal

elements in its covariance matrix. We therefore consider only the diagonal components of the covariance
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matrices when computing the a posteriori probabilities of clusters, assuming all other components to be 0.

Under this assumption, the Gaussian distribution of the  cluster can be expressed as 

(24)

where  is the  component of  and  is the  diagonal element of .  can

now be separated out in terms of the reliably known and unreliably known components of  as

(25)

The first product term in Equation (25) computes the probabilities of all reliably known components of

, i.e. all components of , and the second product term computes the probability of all unreliably

known components.  can now be computed as

(26)

The a posteriori probabilities of the clusters, i.e. the  terms, can now be

computed from the  values using Equation (22).  can subsequently be

estimated using Equation (21).

We note, finally, that in order to accommodate most completely the assumption of diagonal covariance

matrices used in the estimation of cluster a posteriori probabilities, we initially estimate the distribution

parameters of all clusters assuming diagonal covariance matrices in the implementation of the EM algo-

rithm. We then compute full covariance matrices for all the clusters in a final pass of the algorithm. 
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6. IDENTIFYING UNRELIABLE COMPONENTS OF THE 
SPECTROGRAM

For missing-feature methods to be practicable, unreliable spectrographic components must be identi-

fied without a priori knowledge of their SNR. The two main approaches to this are based on computational

auditory scene analysis (CASA) (e.g. Cooke, Green and Crawford, 1994; Cooke, Green, Anderson and

Abberley, 1994), and on explicit noise tracking (e.g. Drygajlo et. al., 1998; Vizinho et. al. 1999). CASA-

based methods attempt to identify the reliable regions of the spectrogram based on acoustic cues and the

known behavior of acoustic signals (e.g. grouping of spectral bands, harmonicity, etc.). Noise-tracking-

based methods, on the other hand, attempt to maintain a running estimate of the noise spectrum and use

this to determine which components of the spectrogram are unreliable. 

FIGURE 4 ABOUT HERE

In this paper we chose to use a Bayesian classifier to identify noisy components of the spectrogram.

This reduces the task of identifying unreliable spectrographic components to a simple binary classification

procedure. The features used in classification are designed to exploit the characteristics of the speech sig-

nal itself. Two of the features, used for voiced speech segments, characterize the harmonicity and periodic-

ity often present in the signal. Additional features, used for both voiced and unvoiced speech, capture

information about the subband energy levels and spectral contour across frequency. Details of the mask-

estimation classifier can be found in (Seltzer et. al., 2003). Figure 4a shows the spectrogram from Figure

1b, when unreliable components in the spectrogram have been identified from their known SNR values

and removed. Figure 4b shows the same figure when the identity of the unreliable components has been

estimated by the Bayesian classifier used in this paper.

7. EXPERIMENTAL EVALUTION

In this section we describe a series of experiments conducted to evaluate the recognition accuracy

obtained using the proposed feature-compensation methods, and to contrast this with the accuracy obtained

using state-based imputation and marginalization. Experiments were conducted on speech corrupted by

white noise and segments of music. These noise types represent two extremes of spectral and temporal dis-

tortions - white noise has a flat spectrum and is stationary, while music has a very detailed spectral struc-
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ture and is highly non-stationary. We initially describe experiments with “oracle” (or perfect) knowledge of

the local SNR of time-frequency components in the spectrogram. Within these experiments we evaluate

the effect of preprocessing and recognition with cepstra. These experiments establish an upper bound on

the recognition performance obtainable with our experimental setup. We then describe results obtained

from experiments employing a more realistic scenario where the locations of unreliable components must

be estimated. 

7.1  Experimental Setup

The DARPA Resource Management (RM1) database (Price, Fisher, Bernstein and Pallet, 1988) and

the CMU SPHINX-III HMM-based speech recognition system were used in all the experiments described

in this paper. Context-dependent HMMs with 2000 tied states were trained using both the log spectra and

cepstra of clean speech. State output distributions were modelled as Gaussian, except for the experiments

that evaluated the performance of marginalization with more detailed state output distributions. In the latter

case, state output distributions were modelled as mixtures of Gaussians. In all cases, the Gaussians in the

state output distributions were assumed to have diagonal covariance matrices. A simple bigram language

model was used. The language weight was kept to a minimum in all cases in order to emphasize the effect

of the noisy acoustics on recognition accuracy. A 20-dimensional Mel spectral spectrographic representa-

tion was used in the experiments. Test utterances were corrupted by white noise and randomly-chosen

samples of music from the Marketplace news program, as appropriate. In all cases both the additive noise

and the clean speech samples were available separately, making it possible to evaluate the true SNR of any

component in the spectrogram of the noisy utterances.

7.2  Recognition Performance with Knowledge of True SNR

Missing feature methods depend critically on being able to identify unreliable regions of the spectro-

gram as such. In the experiments described in this section, we assume that this information is available and

accurate. The recognition performance obtained with the various missing feature methods in this scenario

represents an upper bound on the performance that can be obtained within the current experimental setup.

Unreliable components of spectrograms were identified based on the true value of the SNR of time-fre-

quency components, the computation of which was permitted by the experimental setup, as explained in
18



Section 7.1. All components whose SNR values lay below a threshold were deemed to be unreliable. A

threshold value of 0 dB was found to be optimal or close to optimal at all SNRs for marginalization. For

state-based imputation and the proposed feature-compensation methods, the best threshold across all noise

levels was found to be –5 dB. The experiments reported in this section used these threshold values to iden-

tify unreliable components. For state-based imputation and marginalization, recognition was performed

with the resulting incomplete spectrograms. For the feature-compensation methods, complete spectro-

grams were reconstructed. Figures 5a and 5b show example spectrograms obtained by reconstructing unre-

liable components that have been estimated from their known SNR values, using correlation-based and

cluster-based reconstruction. Recognition was performed using as features either the log-spectral vectors

from the reconstructed spectrogram, or 13-dimensional cepstral coefficients derived from the log-spectral

vectors 

FIGURE 5 ABOUT HERE

7.2.1  Recognition with Log Spectra

FIGURE 6 ABOUT HERE

Figure 6 shows recognition accuracies obtained by applying the various missing-feature methods to

speech corrupted by white noise and music to various SNRs. Recognition has been performed using log-

spectral vectors in all cases. For marginalization, no mean normalization was performed on the features.

For all other methods mean normalization was performed. In all cases, HMM state output distributions

were modelled as Gaussian. We observe from these plots that marginalization is capable of resulting in

remarkable robustness to corruption by noise. In fact, the recognition accuracy at 0 dB is only a relative

20% worse than that obtained at 25 dB. All other methods provide significant improvements over baseline

recognition performance (with noisy vectors), but are much worse that marginalization. This is to be

expected when recognition is performed with log spectra, since, as mentioned in Section 4.2, marginaliza-

tion performs optimal classification with the unreliable data, whereas the other methods do not. Feature-

compensation methods do, however, perform comparably to, or better than state-based imputation.
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7.2.2  Effect of Preprocessing

The effect of preprocessing the signal is different on different missing feature methods. One form of

preprocessing commonly used is mean normalization. In this procedure the mean value of the feature vec-

tors is subtracted from all the vectors. This is known to result in significant improvement in recognition

performance. When missing-feature methods are applied, however, it is not clear whether this procedure is

useful. Figure 7a shows the effect of mean normalization on the recognition accuracy obtained with vari-

ous missing-feature methods on speech corrupted to 10 dB by white noise. Both reliable and unreliable

components were used in computing the mean value of the vectors in all cases. We observe that mean nor-

malization is useful in all cases where estimation of unreliable components is performed, i.e. for the fea-

ture-compensation methods and state-based imputation. For marginalization, however, mean

normalization actually results in a degradation of performance.

FIGURE 7 ABOUT HERE

 A basic assumption in missing feature methods is that the reliable components of noisy spectral vec-

tors are good approximations to corresponding components of the underlying true vector. This, however, is

not necessarily true, since the components that are identified as reliable can have fairly low SNR values,

depending on the SNR threshold used to identify reliable components. When the corrupting noise is sta-

tionary or slowly varying, such as white noise, automobile noise, or factory noise, the spectrum of the

noise can be reasonably well estimated and the SNR of the reliable components can be improved by per-

forming spectral subtraction (Boll, 1979) as a preprocessing step. Figure 7b shows the recognition perfor-

mance obtained by the various methods on speech corrupted by white noise, when reliable spectral

components have been preprocessed by spectral subtraction. As expected, spectral subtraction improves

the performance of feature-compensation methods, as well as state-based imputation. However, it degrades

the recognition performance of marginalization

7.2.3  Recognition with Cepstra

FIGURE 8 ABOUT  HERE

One of the primary arguments for spectrogram reconstruction methods is that the reconstructed spec-

trograms can now be used to derive cepstral features, and recognition can be performed with cepstra to
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obtain superior recognition performance. Figure 8 shows the recognition results obtained with such a

setup. Recognition with cepstra is greatly superior to that with log spectra. Comparison with Figure 6 also

shows that, although marginalization greatly outperforms other methods when recognition is performed

with log spectra, the recognition performance obtained with cepstra derived from the reconstructed spec-

trograms results in much better recognition than obtainable with marginalization.

7.3  Effect of Errors in Identifying Unreliable Components

The experiments in the previous section only served to establish the upper bound performance obtain-

able for the various methods when location of unreliable components in the spectrogram is known a priori.

In reality, however, the location of unreliable components must be estimated. The estimation of these loca-

tions can be very errorful, and different missing-feature methods have differing sensitivity to errors in

identifying unreliable components. Figures 5c and 5d show the reconstructed spectrograms obtained for

the spectrogram in Figure 4b, where the identity of unreliable components was estimated. These figures are

seen to be different from those in Figures 5a and 5b obtained with a priori knowledge of the unreliable

components.

FIGURE 9 ABOUT HERE

Figure 9 shows recognition accuracies obtained for several missing-feature methods applied to speech

corrupted by white noise to 10 dB. Recognition has been performed using log spectra in all cases. We com-

pare recognition accuracy obtained using perfect “oracle” knowledge of the true SNR values of spectro-

graphic components to identify unreliable feature locations with the corresponding accuracy obtained

when the decisions about locations of unreliable components are estimated from noisy data. Marginaliza-

tion shows the greatest robustness to errors in estimation of unreliable components. In general, the classi-

fier-compensation methods are much more robust to errors than the feature-compensation methods. 

FIGURE 10 ABOUT HERE

More detailed results are shown in Figure 10, which shows recognition accuracy obtained with various

missing-feature methods as a function of SNR on speech corrupted by white noise and music, when the

identity of the unreliable components is estimated. In all cases, the HMM state output distributions were
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modelled by single Gaussians. Mean normalization was performed in the case of the feature-compensation

methods and state-based imputation, but not for marginalization. Both classifier-compensation methods,

marginalization and state-based imputation, are seen to outperform the feature-compensation methods.

Marginalization, especially, is significantly superior to all other methods. The difference between margin-

alization and the other methods is further enhanced by its greater robustness to errors in identifying unreli-

able components.

FIGURE 11 ABOUT HERE

Once again, however, reconstructed spectrograms can be used to derive cepstra for recognition. Figure

11 shows the recognition performance obtained on speech corrupted by white noise and music, with cep-

stra derived from spectrograms reconstructed by the proposed feature-compensation methods. Comparison

with Figure 10 reveals that even when the identities of unreliable components must be estimated, the rec-

ognition accuracy obtained with cepstra derived from reconstructed spectrograms is greater than that

obtained with marginalization and log-spectra-based recognition.

FIGURE 12 ABOUT HERE

In all experiments reported so far, state output distributions have been modelled by single Gaussians

with diagonal covariances. It is likely that the recognition performance of the classifier-compensation

methods may be improved by modelling state output distributions by mixtures of Gaussians instead,

thereby better capturing the correlations between spectral components. Figure 12 tests this hypothesis. It

shows the recognition performance obtained with marginalization when state output distributions are mod-

elled by mixtures of 1, 2, 4 and 8 Gaussians, for speech corrupted by white noise and music, when the

identities of unreliable components are estimated. The figure also shows the performance obtained from

cepstra derived from spectrograms reconstructed by cluster-based reconstruction. It is seen that although

increasing the number of Gaussians results in slightly better performance at higher SNRs, it still remains

inferior to that obtained with the cepstra derived from reconstructed spectrograms. While the small

improvements in recognition performance resulting from increasing the number of Gaussians in the state

output densities is explained by the size of the training corpus for the RM1 database, and greater improve-

ments can be expected with larger training corpora, we do not expect the trends in performance to change.
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In general, the ability to perform cepstra-based recognition easily outweighs the advantages due to the

optimal classification and those due to the greater robustness to errors in estimating unreliable components

that are characteristic of marginalization. The advantage however diminishes as the SNR decreases to 0 dB

or so.

7.4  Reconstructing Spectrograms from HMM State Sequences

FIGURE 13 ABOUT HERE

In Cooke et. al. (1997) it has been suggested that classifier-compensation methods could be used to

reconstruct spectrograms. One could, for instance, derive the best state-sequence for the utterance, and

reconstruct the unreliable components of the spectral vectors using the distribution of the state with which

they are associated. The reconstructed vectors could now be converted to cepstra for recognition. Figure 13

shows the recognition accuracy obtained with cepstra derived from log spectra reconstructed in this man-

ner, when state sequences were obtained using state-based imputation and marginalization. We note that

overall, these methods are not more effective than the proposed feature-compensation methods. 

In this experiment, the structure of the recognizer used to reconstruct the unreliable components was as

complex as that used for the final recognition, i.e. both had as the same number of tied states (2000), and

modelled state output densities as Gaussians. In principle, however, the HMMs used for the reconstruction

can be much simpler than those used for recognition. While we have not explored this aspect, we point out

that cluster-based reconstruction may be viewed as a limiting case where all states in the HMM used for

reconstruction share a single Gaussian mixture distribution.

7.5  Computational Complexity

FIGURE 14 ABOUT HERE

The computational complexity of the various missing-feature methods also varies. Figure 14 shows the

average time in seconds taken by a 400-MHz DEC Alpha to recognize an utterance of speech from the RM
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database that has been corrupted to 10 dB by white noise, using the various missing-feature methods. This

includes the time taken for computation of log spectra, reconstruction of unreliable components, transfor-

mation to cepstra in the case of the feature-compensation methods, and recognition. The time taken for

identifying unreliable components is not included. Marginalization is by far the most expensive of the

methods. Feature-compensation methods do not generally increase the time taken for recognition signifi-

cantly over the baseline.

The differences in the computational requirements of the various methods is related to the mathemati-

cal operations underlying them. State-based imputation and covariance-based reconstruction only require

MAP estimation of unreliable components, and are relatively inexpensive. On the other hand, marginaliza-

tion requires the computation of an error function for every unreliable component of a vector for every

Gaussian in every HMM state whose output probability is evaluated. Cluster-based reconstruction simi-

larly requires computation of error functions for every unreliable component for every cluster in the clus-

ter-based representation. The number of Gaussians in the state output distributions of the HMMs in the

recognizer is generally larger than that in the Gaussian mixture densities employed in cluster-based recon-

struction. As a result, marginalization is computationally more expensive than cluster-based reconstruc-

tion. 

Since the computational expense of marginalization (and that of classifier-compensation methods in

general) is a function of the number of HMM states for which output probabilities must be evaluated, it is

also related to the perplexity of the language model used by the recognizer. The number of active hypothe-

ses considered by the recognizer at any instant increases with the perplexity of the language model used.

This in turn increases the number of HMM states that must be evaluated for each frame, and hence the

number of error functions that must be computed. The computational complexity of all missing-feature

methods is also related to the SNR of the data. The number of corrupted spectral components that must be

marginalized or reconstructed increases with decreasing SNR. Decreasing SNR also has a secondary effect

on classifier-compensation methods: the number of active hypotheses considered by the recognizer that

survive pruning, and hence the number of HMM states to be evaluated, usually increases with decreasing

SNR. 
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On the other hand, the actual computation required by the various methods is also dependent on the

manner in which they have been implemented. For instance, the computation of error functions can be con-

siderably speeded up by the use of lookup tables. This would speed up both marginalization and cluster-

based reconstruction, the former more than the latter. Hence, while the comparisons shown in Figure 14

may be considered indicative of the relative complexity of the various methods, the actual computational

complexity of the methods would vary with the recognition task and the specific implementation of the

algorithms.

8. CONCLUSIONS

While the actual recognition results shown in Section 7 are specific to a particular database, experi-

mental setup, and recognition system used, they establish a set of very consistent trends. Of all the missing

feature methods, marginalizing is clearly the best when recognition is performed with log spectral vectors.

It results in the most robustness to noise and errors in identifying unreliable components. It must be

emphasized that when recognition is performed in the feature domain where unreliable components are

identified (i.e. on spectra or log spectra), the best classifier-compensation methods can always be expected

to outperform the best feature-compensation methods. In addition, in classifier-compensation methods the

search algorithm used by the recognizer can itself be modified to account for the uncertainty in the location

of corrupt spectrographic components (e.g. Barker, Cooke and Ellis, 2003).

The proposed feature-compensation methods are observed to result in better eventual recognition per-

formance than marginalization primarily because they permit recognition with cepstra derived from the

reconstructed spectrograms. Of the two methods proposed, cluster-based reconstruction provides signifi-

cantly better accuracy than correlation-based reconstruction. The latter algorithm, however, has the advan-

tages that it is extremely simple, and that it provides better performance than state-based imputation when

recognition is performed using cepstra. In addition, in other experiments not reported in this paper correla-

tion-based reconstruction was found to be superior to cluster-based reconstruction when the loss of spec-

trographic information was due to the random excision of time-frequency components, e.g. by loss during

transmission, and not due to additive noise. The feature-compensation methods described in this paper use

only very simple statistical models to represent the distribution of the spectral vectors of clean speech. It is

expected that their performance can be improved by using more sophisticated models. Cluster-based
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reconstruction is expected to gain by adding temporal dependencies in the statistical model, either by mod-

elling the a priori probabilities using a Markov chain, effectively converting the Gaussian mixture distri-

bution to an HMM, or by modelling the distribution of temporal derivatives of the vectors jointly with the

vectors, or by some combination of the two. Similarly covariance-based reconstruction may be improved

by modelling spectrograms as the output of a mixture of stochastic processes.

Renevey and Drygajlo (2000) and Morris, Barker and Bourlard (2001) have shown that the perfor-

mance of marginalization may be improved significantly by associating a probability of reliability with

spectrographic components, rather than by tagging them as reliable or not in a binary manner. Such proba-

bilistic tagging can also be incorporated into the methods proposed in this paper. 

Finally, it must be pointed out that the feature-compensation methods are not limited to working only

with the statistical models used in this paper. Since the basic idea behind these methods is to reconstruct

the spectrograms externally to the recognizer, other techniques, such as Kalman filters or neural networks

might also be used to reconstruct the unreliable components.
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Appendix A: Iterative Procedure for Bounded MAP Estimation

The problem of joint bounded MAP estimation is to find a set of values  such that 

(A1)

We derive an iterative solution for this estimate in this appendix. 

Let  be the estimate obtained after the th iteration of this procedure. If the th esti-

mate of  is obtained as

(A2)

then it is easy to see that 

(A3)

Using Bayes’ rule and eliminating all irrelevant terms, Equation (A2) can be restated as

(A4)

which is simply the bounded MAP estimate of , conditioned on . When  is

Gaussian, this is simply given by

(A5)

It can similarly be shown that if the th estimate of  is obtained as

(A6)

then 

(A7)
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In other words, if we begin with some set of initial estimates , and iteratively find the
th estimate of each  as the bounded MAP estimate of that component as given by Equation (A6),

 is guaranteed not to decrease at each step in the itera-

tion.

For Gaussian random variables, Equation (A6) can be equivalently written as

(A8)

When  is Gaussian,  has only one

peak. Thus, the iterative solution given by Equation (A8) is guaranteed to find this peak, which is the

unique solution to Equation (A1). Therefore, the iterative solution to the joint bounded MAP estimation of

a set of jointly Gaussian variables  conditioned on the bound 

is given by the following procedure:

1) Initialize all the  values as 

2) Obtain the th estimate of  as 

3) Iterate until  converges.
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Figure 1. a) Mel spectrogram of a clean speech signal. The utterance is “show locations and C-ratings of

all deployed subs”. b) Mel spectrogram of the same signal when it has been corrupted to 10 dB by white

noise.
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Figure 2. The figure represents a small spectrogram with 4 spectral vectors, each with 4 components. The

grey components are missing. We wish to estimate all the missing components in the second spectral vec-

tor jointly. These are shown in a lighter shade of grey in the figure.  is constructed as

The neighborhood vector  is constructed of all the components , such that either

, or . These are represented by the components with the thick out-

lines. This gives us

The mean vectors for  and , the clean speech counterparts of  and , are con-
structed as

The autocovariance matrix of  is a 5x5 matrix constructed as

The cross covariance between  and  is a 2x5 matrix constructed as
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Figure 3. Schematic representation of cluster-based reconstruction. The large ellipse represents the outline

of the distribution of a set of two dimensional vectors. The data has been segregated into a number of small

clusters, represented by the smaller ellipses. The solid line represents a complete vector. The Y component

of this vector is unreliable and only the X component, represented by the dotted line along the X axis, is

reliably known. The cluster-based reconstruction method identifies the thick ellipse as the cluster that the

complete vector belongs to, and uses the distribution of that cluster to obtain a bounded MAP estimate for

the Y component, and thereby the complete vector, represented by the dashed line.
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Figure 4. a) Mel spectrogram of the signal in Figure 1b, when all components with SNR less than -5dB

have been tagged unreliable. The white regions of the figure represent unreliable components. b) Mel

spectrogram for the same signal when the identity of unreliable regions has been estimated. The white

regions in the figure represent components that have been identified by a classifier as being unreliable.
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Figure 5. Reconstruction of the Mel spectrogram in Figure 4a. a) Reconstruction obtained with correla-

tion-based reconstruction when unreliable components have been identified based on their SNR b) Recon-

struction obtained with cluster-based reconstruction when unreliable components have been identified

based on their SNR. c) Reconstruction obtained with correlation-based reconstruction when the identities

of unreliable components have been estimated b) Reconstruction obtained with cluster-based reconstruc-

tion when the identities of unreliable components have been estimated.
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Figure 6. Recognition performance of various missing feature methods on noisy speech, when unreliable

components are located on the basis of their SNR values. a) Speech corrupted by white noise. b) Speech

corrupted by music. In both figures the baseline recognition performance with the uncompensated noisy

speech is also shown.
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Figure 7. Effect of preprocessing. a) Comparison of recognition accuracies obtained with and without

mean normalization of spectral vectors. b) Recognition performance of various missing feature methods

on speech corrupted by white noise to various SNRs, when spectral subtraction has been performed on the

reliable portions of spectral vectors.
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Figure 8. Recognition performance obtained with cepstra derived from spectrograms reconstructed with

prior knowledge of the identity of unreliable components. a) Recognition on speech corrupted by white

noise to various SNRs. b) Recognition on speech corrupted by music to various SNRs. In both cases the

baseline performance with uncompensated noisy speech, and the performance with a typical noise com-

pensation algorithm, spectral subtraction, are shown for contrast.
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estimated.
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Figure 10. Recognition performance of various missing feature methods on noisy speech when the loca-

tions of unreliable components is estimated. a) Speech corrupted by white noise. b) Speech corrupted by

music. Recognition was performed using log spectra.
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Figure 11. Recognition with cepstra derived from reconstructed spectrograms, when the identity of unreli-

able components is estimated. a) Speech corrupted by white noise. b) Speech corrupted by music. As a

contrast, baseline performance with the cepstra of noisy speech, and in the case of the white noise, perfor-

mance with spectral subtraction are also shown.
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Figure 12. Recognition performance of marginalization on HMMs with state output distributions modelled

by mixtures of 1, 2, 4 and 8 Gaussians, when the identities of unreliable components are estimated. a) Rec-

ognition on speech corrupted by white noise. b) Recognition on speech corrupted by music. Recognition is

performed with log spectra, in order to perform marginalization. The performance obtained with cepstra

derived from spectrograms reconstructed by cluster-based reconstruction is also shown.
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Figure 13. Recognition accuracy using cepstra derived from log spectra reconstructed using state

sequences hypothesized by classifier-compensation methods. Results are shown for speech corrupted both

by white noise and music.
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