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Abstract

In this paper, we present statistical techniques for parsing the structure of produced soccer programs. The problem is

important for applications such as personalized video streaming and browsing systems, in which videos are segmented

into different states and important states are selected based on user preferences. While prior work focuses on the

detection of special events such as goals or corner kicks, this paper is concerned with generic structural elements of the

game. We define two mutually exclusive states of the game, play and break based on the rules of soccer. Automatic

detection of such generic states represents an original challenging issue due to high appearance diversities and temporal

dynamics of such states in different videos. We select a salient feature set from the compressed domain, dominant color

ratio and motion intensity, based on the special syntax and content characteristics of soccer videos. We then model the

stochastic structures of each state of the game with a set of hidden Markov models. Finally, higher-level transitions are

taken into account and dynamic programming techniques are used to obtain the maximum likelihood segmentation of

the video sequence. The system achieves a promising classification accuracy of 83.5%, with light-weight computation on

feature extraction and model inference, as well as a satisfactory accuracy in boundary timing.
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1. Introduction

In this paper, we present algorithms for the

analysis of video structure using domain knowl-

edge and supervised learning of statistical models.

The domain of interest here is soccer video, and
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the structure we are interested in is the temporal

sequence of high-level game states; namely, play

and break. The goal of this work is to parse the

continuous video stream into a sequence of com-

ponent state labels automatically, i.e., to jointly

segment the video sequence into homogeneous
chunks and classify each segment as one of the

semantic states as well. Structure parsing is not

only useful in automatic content filtering for gen-

eral TV audience and soccer professionals in this

special domain, it is also related to an important

general problem of video structure analysis and

content understanding. While most existing work
ed.
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focuses on the detection of domain-specific events,

our approach in generic high-level structure ana-

lysis is distinctive with several important advan-

tages: (1) the generic state information can be used

to filter and significantly reduce the video data.

For example, typically no more than 60% of the
video corresponds to play, thus we can achieve

significant information reduction; (2) videos in

different states clearly have different temporal

variations, which can be captured by statistical

temporal models such as the hidden Markov

models (HMM).

Related work in the literature of sports video

analysis has addressed soccer and various sports
games. For soccer video, prior work has been on

shot classification (Gong et al., 1995), scene

reconstruction (Yow et al., 1995), and rule-based

semantic classification (Qian and Tovinkere,

2001). For other sports video, supervised learning

was used by Zhong and Chang (2001) to recognize

canonical views such as baseball pitching and

tennis serve. In the area of video genre segmenta-
tion and classification, Wang et al. (2000) have

developed HMM-based models for classifying

videos into news, commercial, sports and weather

reports.

In this work, we first exploit domain-specific

video syntax to identify salient high-level struc-

tures. Such syntactic structures are usually asso-

ciated with important semantic meanings in
specific domains. Taking soccer as a test case, we

identify play and break as two recurrent high-level

structures, which correspond well to the semantic

states of the game. Such observations then lead us

to choosing two simple, but effective features in the

compressed domain, dominant color ratio and

motion intensity. In our prior work (Xu et al.,

2001), we showed such specific set of features,
when combined with rule-based detection tech-

niques, were indeed effective in play/break detec-

tion in soccer. In this paper, we will use formal

statistical techniques to model domain-specific

syntactic constraints rather than using heuristic

rules only. The stochastic structure within a play

or a break is modelled with a set of HMMs, and

the transition among these HMMs is addressed
with dynamic programming. Average classification

accuracy per segment is 83.5%, and most of the
play/break boundaries are correctly detected

within a 3-second window (Xie et al., 2002). It is

encouraging that high-level domain-dependent

video structures can be computed with high ac-

curacy using compressed-domain features and

generic statistical tools. We believe that the per-
formance can be attributed to the match of fea-

tures to the domain syntax and the power of the

statistical tools in capturing the perceptual varia-

tions and temporal dynamics of the video.

In Section 2, we define the high-level structures

of play and break in soccer, and present relevant

observations of soccer video syntax; in Section 3

we describe algorithms for feature extraction and
validation results of such a feature set with rule-

based detection; in Section 4 we discuss algorithms

for training HMMs and using the models to seg-

ment new videos to play and break; experiments

and results are presented in Section 5; and in

Section 6 we draw conclusions and discuss future

work.
2. The syntax and high-level structures in soccer

video

In this section, we present a few observations on

soccer video that explore the interesting relations

between syntactic structures and semantic states of

the video.

2.1. Soccer game semantics

We define the set of mutually exclusive and

complete semantic states in a soccer game: play

and break (FIFA, 2002). The game is in play when

the ball is in the field and the game is going on;

break, or out of play, is the compliment set, i.e.,
whenever ‘‘the ball has completely crossed the goal

line or touch line, whether on the ground or in the

air’’ or ‘‘the game has been halted by the referee’’.

Segmenting a soccer video into play/break is

hard because of (1) the absence of a canonical

scene as opposed to the serve scene in tennis

(Sudhir et al., 1998) or the pitch scene in baseball

video (Zhong and Chang, 2001); (2) the loose
temporal structure, i.e. play/break transitions and

highlights of a game (goal, corner kick, shot, etc.)
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do not have a deterministic relationship with other

events. This is different from the case for tennis––

volleys are always preceded by a serve in a tennis

game. Yet identifying play/break is interesting

because not only can we achieve about 40%

information reduction (Table 1), play/break
information also has many interesting applications

such as play-by-play browsing and editing, or

analysis of game statistics.

2.2. Soccer video syntax

Soccer video syntax refers to the typical pro-

duction style and editing patterns that help the
viewer understand and appreciate the game. Two

major factors influencing the syntax are the pro-

ducer and the game itself, and the purpose of

syntax is to emphasize the events as well as to at-

tract viewers� attention (such as the use of cut-
aways). Specifically, soccer video syntax can be

characterized by some rules-of-thumb observed by

sports video producers (Shook, 1995): (1) convey
global status of the game; (2) closely follow action

and capture highlights. In our algorithm, two

salient features are selected to capture this syntax

implicitly.

One additional informative observation is

about the three main types of views under the

common camera setup in soccer video production;
Table 1

Soccer video clips used in the experiment

Clip name Length # of plays Play-pe

Argentina 23056
00

34 58.5

Korea A 25000
00

37 60.6

Korea B 25023
00

28 52.1

Espana 15000
00

16 59.2

Fig. 1. Dominant color ratio as an effective feature in distinguishing th

close-up. Global view has the largest grass area, zoom-in has less, an

irrelevant to the game).
namely global (long shot), zoom-in (medium shot),

and close-up, according to the scale of the shot.

Distinguishing the three types of views is helpful

because of the following reasons:

(1) The type of view is closely related to the

semantic state of the game. During the play, TV
producers tend to stay in the global view in order

to keep the audience informed of the status of the

entire field; interrupted by short zoom-ins or close-

ups to follow the players� action; during the break,
there are less global views because not much is

happening in a global scale, and zoom-ins and

close-ups tends to be the majority as they can

effectively show the cause and effect of the break
(such as why a foul would happen, its conse-

quences, etc.); furthermore, the transitions be-

tween plays and breaks usually arise within some

time range, if not perfectly aligned, with a transi-

tion of view type.

(2) The type of view can be approximately

computed with low-level features. The difference

among the views is usually reflected in the ratio of
green grass area in soccer video, as shown in Fig.

1. In Section 3.1, the algorithms for computing

grass-area ratio and statistics on how this feature

relates to the scale of the view will be presented in

more detail. We shall keep in mind, however, the

scale of a shot is a semantic concept. This is partly

because the long-medium-close-up scales are de-
rcentage (%) Source Dominant hue

TV program 0.1840

MPEG-7 0.2436

MPEG-7 0.2328

MPEG-7 0.2042

ree kinds of views in soccer video. Left to right: global, zoom-in,

d close-ups has hardly any (including cutaways and other shots
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fined with respect to the size of the subject. Dif-

ferent viewers or even the same viewer under a

different context may disagree on what the subject

and the appropriate distances that characterize the

scale of the shot shall be. ‘‘The dividing line be-

tween long shot and medium shot is blurry, as is the
line between medium shot and close shot. . . There is
no evident reason for this variation. It is not a

distinction, for example, between TV and film

language or 1930s and 1980s language.’’ (The

Wikipedians, 2002). Furthermore, the mapping

from views to features adds one more factor of

uncertainty to this inherent flexibility in the defi-

nition of views, thus trying to map features to
views will be a pattern recognition problem in

itself.
3. Computing informative features

Based on observations relating soccer video

semantics, video production syntax and low-level
perceptual features, we use one special feature,

dominant color ratio, along with one generic fea-

ture, motion intensity, to capture the characteristics

of soccer video content. Moreover, out attention

here is on compressed-domain features, since one

of the objectives of the system is real-time perfor-

mance under constrained resource and diverse

device settings.

3.1. Dominant color ratio

Computing dominant color ratio involves two

steps, i.e. learning the dominant color for each

clip, and then use the learned definition for each

clip to find the percentage of pixels of this color.

3.1.1. Adaptively learning dominant color

The grass color of the soccer field is the domi-

nant color in this domain, since a televised soccer

game is bound to show the soccer field most of the

time, in order to correctly convey the game status.

The appearance of the grass color, however, ran-

ges from dark green to yellowish green or olive,

depending on the field condition and capturing
device. Despite these factors, we have observed

that within one game, the hue value in the HSV
(Hue-Saturation-Value) color space is relatively

stable despite lighting variations; hence, learning

the hue value would yield a good definition of

dominant color.

The dominant color is adaptively learned for

each video clip, using the following cumulative
color histogram statistic: 50 frames are drawn

from the initial five minutes (an I/P frame pool of

3000) of the video, the 128-bin hue histogram is

accumulated over all sample frames, and the peak

of this cumulative hue histogram correspond to

the dominant color. This experiment is repeated

eight times, each with a different set of frame

samples; two standard deviations below and above
the mean of the peak hue value over the eight trials

is taken as the range for grass color in the current

video clip; this definition will include 95.4% of the

grass pixels, assuming the distribution of peak hue

value is Gaussian. This definition of dominant

color is specific enough to characterize variations

across different games, yet relatively consistent to

account for the small variations within one game
(Table 1). We have also performed this test for two

soccer videos that comes from the same game, 30

min apart, and results indeed show that the dif-

ference of the mean hue values over time is smaller

than the standard deviation within one clip.

3.1.2. The dominant color ratio

Once we can distinguish grass pixels vs. non-
grass pixels in each frame, the feature dominant-

color-ratio g is just computed as g ¼ jPgj=jP j,
where jP j is the number of all pixels, and jPgj is the
number of grass pixels.

3.1.3. The effectiveness of dominant color ratio

Observations in Section 2.2 showed intuitions

that relates g to the scale of view and in turn to the
status of the game. Experiments in (Xu et al.,

2001) showed accuracies of 80–92% in labelling the

three kinds of views using adaptive thresholds, and

accuracies 67.3–86.5% in segmenting play/breaks

from the view labels using heuristic rules. While

the results are satisfactory, it is worth noticing that

(1) the scale of view is a semantic concept (Section

2.2), and most of the errors in labelling views is
due to model breakdown; for example, zoom-in is

sometimes shot with a grass background, and the
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area of the grass is sometimes even larger than that

of the global shots; (2) it is not sufficient to model

temporal relationships between views and game

state with heuristic rules, as most of the errors is

caused by violation of the assumption that a play-

break transition only happens upon the transition
of views. On the other hand, shots and shot

boundaries have similar drawbacks such as (1)

shot boundaries are neither aligned with the

transitions of play/break nor with switches in the

scale of view; (2) shot detectors tend to give lots of

false alarms in this domain due to unpredictable

camera motion and intense object motion. Hence,

in our algorithms detailed in Section 4, each game
state corresponds to a feature value distribution of

a mixture of Gaussians, while the temporal tran-

sitions are modelled as a Markov chain.

Note the dominant color feature can be gen-

eralized to many other types of sports as a good

indicator of game status such as baseball, Ameri-

can football, tennis, basketball, etc.
3.2. Motion intensity

Motion intensity m is computed as the average
magnitude of the effective motion vectors in a

frame:

m ¼ 1

jUj
X

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
;

where U ¼ {inter-coded macro-blocks} and v ¼
ðvx; vyÞ is the motion vector for each macro-block.
This measure of motion intensity gives an esti-

mate of the gross motion in the whole frame,

including object and camera motion. Moreover,

motion intensity carries complementary informa-

tion to the color feature, and it often indicates the

semantics within a particular shot. For instance, a
wide shot with high motion intensity often results

from player motion and camera pan during a play;

while a static wide shot usually occurs when the

game has come to a pause. In the sample clip

shown in Fig. 3, we can see distinct feature pat-

terns are associated with the scale of shot and the

game status. But as these variations are hard to

quantify with explicit low-level decision rules, we
resort to HMM modelling described in the next
section. Here we directly estimate motion intensity

from the compressed bitstream instead of the

pixel domain, since MPEG motion vectors can

approximate sparse motion field quite well, and

accurate motion estimation in the pixel domain

is usually orders of magnitude more complex,
depending on the choice of algorithm.
4. Play-break segmentation with HMMs

In a sense, distinguishing the distinct inherent

states of a soccer game, play (P ) and break (B), is
analogous to isolated word recognition in (Ra-
biner, 1989). Here each model corresponds to a

class––phoneme in the speech case, P or B in a
soccer video; the sub-structures within each model

accounts for transitions and variations within and

between phonemes in speech, and the switching of

shots and the variations of motion in a soccer

game. This analogy leads to our use of HMMs for

soccer video segmentation, yet our case has one
more uncertainty factor: there is no pre-segmented

word-boundary in soccer.

Fig. 2 is an overview of the algorithm that takes

the continuous feature stream, and segments and

classifies it into play/break segments. Where the

left half evaluates the data likelihood of fixed-

length short segments against pre-trained HMMs

(Section 4.1); and the right half makes use of long-
term correlation to smooth labels for individual

segments, and generate final segmentation (Sec-

tion 4.2).

4.1. HMM

The HMMs are trained with manually labelled

data set using the Expectation–Maximization
(EM) algorithm. Since the domain-specific classes

P/B in soccer are very diverse in themselves (typi-

cally ranging from 6 s up to 2 min in length), we

use a set of models for each class to capture the

structure variations, instead of just using a

homogeneous model for each class as in (Wang

et al., 2000). We trained K ¼ 6 HMMs with dif-
ferent topologies for play and for break, respec-
tively. These include: 1/2/3-state fully connected

models, 2/3-state left-right models and a 2-state
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fully connected model with an entering and an

exiting state. The observations are modelled as a

mixture of Gaussians, and we use two mixtures per
state in the experiments. Training data are manu-

ally chopped into homogeneous play/break

chunks; model parameters are trained using the

iterative EM algorithm over the pool of labelled

data.

Once HMM models are learned, they can be

used to parse new video clips into play/break seg-

ments. Prior to entering the classification stage,
each feature dimension is smoothed with a low-

pass filter for denoising and normalized with

respect to its mean and variance to account for

inter-clip variations. And then, we window the

feature sequence with a sliding window of length N ,
sliding by M samples, resulting in a set of short

feature chunks fF ðtwÞgTwtw¼1, each of size D	 N ,
where D is the feature dimension, T is the total
number of samples in the whole video sequence, tw
is the index of sliding windows, and Tw ¼ dT=Me is
the total number of windowed feature vectors.

We evaluate the data likelihood for each of the

set of pre-trained play models HP ¼ fH1
P; . . . ;H

K
Pg

against each feature chunk F ðtÞ, to get likelihood
values Q

k
PðtÞ, k ¼ 1; . . . ;K; t ¼ 1; . . . ; Tw. Similarly,

for break models HB ¼ fH1
B; . . . ;H

K
Bg, the likeli-

hood values are Q
k
BðtÞ, k ¼ 1; . . . ;K; t ¼ 1; . . . ; Tw.

We could have taken the maximum-likelihood

decision among all HMMs as the label for the

current feature chunk, but this simple strategy

would lose the correlation present beyond N
samples. We therefore keep the best likelihood

value in each of the P/B class as the best fit among

mixture of experts, i.e. QPðtÞ, maxk fQk
PðtÞg,

QBðtÞ, maxk fQk
BðtÞg, t ¼ 1; . . . ; Tw and model
longer term correlation on top of them with dy-

namic programming as presented in Section 4.2.

There are subtle choices in the HMM training-
classification process: (1) Training is not con-

ducted over N -sample windows since we hope that
the HMM structures can take longer time corre-

lation into account, and thus ‘‘tolerate’’ some less

frequent events in a semantic state such as short

close-ups within a play. Experiments show that the

overall accuracy will be consistently 2–3% lower if

models are trained on short segments, and the
video tends to be severely over-segmented as some

of the short close-ups and cutaways during a play

will be misclassified as break. In our separate

experiments, a Student’s t-test shows that the null
hypothesis that training on longer and short seg-

ments have the same accuracy is rejected with

95.0% confidence. (2) Since training is done for the

whole play or break, but classification is done over
short segments, we may conjecture that results will

not be worse if only the three fully connected

models (instead of all six) are used. This is con-

firmed by the result that classification accuracy

only differs by 1.5% for these two cases, but the

significance for such as test cannot be established

since the p-value for t-test is less than 50%.

4.2. Find optimal path with dynamic programming

HMM likelihood represents the fitness of each

model for every short segment, but the long-term

correlation is unaccounted for. Thus, the remain-

ing problem is to find a global optimal state path

fsðtÞgTwt¼1 using neighborhood information.
If we assume the transition between states P and

B across windowed segments has Markov prop-
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erty, then this problem can be solved with well-

known dynamic programming techniques (Ra-

biner, 1989), as illustrated in Fig. 2. Here we only

need to keep track of the cumulative node score

rsðtÞ, the best score for any path ending in state s at
t, and back-pointers dsðtÞ, the previous node on this
best path, for s 2 fP;Bg, t ¼ 1; . . . ; Tw. The quan-
tities rsðtÞ and dsðtÞ are computed iteratively for
each t on a 2	 Tw trellis, and the optimal path sðtÞ
is obtained by backtracking from the final node.

Note we use the best fit among mixture of ex-

perts QPðtÞ, QBðtÞ as node likelihoods at time t, and
transition probabilities QPP, QPB, QBP, QBB are
obtained by counting over the training set:

Qs0;s, log P ðsðt þ 1Þ ¼ SjsðtÞ ¼ S0Þ

¼ log
XTw
1
t¼1

Isðtþ1Þ¼S � IsðtÞ¼S0

IsðtÞ¼S0

 !
; ð1Þ

where S; S0 2 fP;Bg, and indicator function Ic ¼ 1
when the statement c is true, 0 otherwise.
The iteration at time t is done as in Eqs. (2) and

(3), i.e., for each state in the state space at time t,
we keep track of the incoming path with the

maximum likelihood (Eq. (3)), and the corre-

sponding likelihood is also recorded as the score

for the current node.

rsðtÞ ¼ max
s02fP;Bg

k �Qs0;s

n
þð1
 kÞ �QsðtÞþrs0 ðt
 1Þ

o
;

ð2Þ

dsðtÞ ¼ argmax
s02fP;Bg

k � Qs0 ;s

n
þ rs0 ðt 
 1Þ

o
: ð3Þ

Here the transitions are only modelled between

play and break, rather than among all of the
Fig. 3. Part of clip Argentina (19052
00 � 2003000 ): key frames, feature

programming).
underlying HMM models, because having this

2 · 2 transition matrix is sufficient for our play/
break segmentation task, and modelling all pos-

sible transitions among all HMMs (a 12 · 12
transition matrix required) is subject to over-fit-
ting. Intuitively, if the scores QPðtÞ and QBðtÞ at
each node were the true posterior probability that

feature vector at time t comes from a play or a

break model, then this dynamic programming

step would essentially be a second-level HMM.

Moreover, the constant k weights model likeli-

hood and transition likelihood: k ¼ 0 is equiva-
lent to maximum likelihood classification; k ¼ 1
gives a first-order Markov model. Classification

accuracy is not very sensitive to k if its value is
within a reasonable range. A typical k is 0.25, and
classification accuracy only varies within 1.5% for

k 2 ½0:1; 0:4�.
As shown in Fig. 3, employing this dynamic

programming step alleviates over-segmentation,

and the results show that average classification
accuracy is improved by 2.2% over HMM-maxi-

mum likelihood only, with a t-test confidence
99.5%. As shown in Fig. 2, this dynamic pro-

gramming step involves going through all Q pre-

decessors for each of the Q states for each of the Tw
windowed feature vectors. Hence its complexity is

OðTw � Q2Þ, linear in Tw when Q is a small constant
(Q ¼ 2 in our case). Furthermore, the computation
load of dynamic programming is only a fraction of

the HMM classification step, since the latter will

be OðT � CÞ, where T � M � Tw, and the multiplying
constant C is quadratic to the maximum number

of states used in the HMMs.

In addition, we have also looked into the

problem of finding maximum-likelihood segmen-

tation from an unevenly spaced grid. We use
contours, and segmentation results (with or without dynamic



Table 2

Classification accuracy, the diagonal elements are training re-

sults

Test set Training set avg-cla

Argentina Korea

A

Korea

B

Espana

Argentina 0.872 0.825 0.825 0.806 0.819

Korea A 0.781 0.843 0.843 0.798 0.807

Korea B 0.799 0.853 0.853 0.896 0.849

Espana 0.799 0.896 0.896 0.817 0.863

avg-gen 0.793 0.858 0.855 0.833 0.835
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shot boundary detection results as hypothesis

transition points (a hypothesis set much sparser

than every N -sample segment in our experi-

ments), and search through not only all previous

states but also all durations with an algorithm

very similar to the inhomogeneous HMM (Ra-
mesh and Wilpon, 1992). This incurs a compu-

tational complexity of OðT 2wÞ instead of OðTwÞ,
with significantly more running time on our

current data set. The accuracy, however, was 2%

less than that on a homogeneous grid. This

deterioration is partly due to the mismatch be-

tween shot boundaries and play/break bound-

aries, but increasing the number of hypothesis
transition points is not worthwhile due to the

increased computation load.
5. Experiments

Four soccer video clips used in our experiment

are briefly described in Table 1. All clips are in
MPEG-1 format, SIF size, 30 frames per second

or 25 frames per second. The dominant hue

values are adaptively learned for each clip (Sec-

tion 3.1) and the dominant color ratios are

computed on I- and P -frames only. The motion
intensities are computed on P -frames and inter-
polated on I-frames. A window of three seconds

long sliding by one second is used to convert
continuous feature stream into short segments.

The ground-truth is labelled under the principles

that (1) we assume the game status does not

change unless indicated by a perceivable event,

e.g., the ball is shown out of boundary, a whistle

sound is heard, etc.; (2) replays are treated as in

play, unless it is not adjacent to a play and

shorter than 5 s. Here play-percentage refers to
the amount of time the game is in play over the

total length of the clip.

In our experiments, the HMM are trained on

one entire clip and tested on all three other clips;

this process is repeated for each video as the

training set. We measure classification accuracy

as the number of correctly classified samples over

total number of samples. Training and testing
accuracies are shown in Table 2. Average clas-

sification performance (avg-cla) of each clip as
test set is computed as the mean of the non-
diagonal elements of the current row; similarly,

average generalization performance (avg-gen) is

computed for the clip as training set; and the

overall average classification/generalization accu-

racy over the entire data set is put in the lower

right corner.

Since our goal is to do joint segmentation and

classification in one-pass, we are also interested in
measuring the boundary accuracy. For each 3-s

segment (1 s apart from each other), the classifier

not only gives the P/B label, but also indicates if a

boundary exists between the previous and the

current label. This is different from boundary

detection algorithms that solely aim at outlier

detection (such as shot boundary detection by

measuring histogram distance), since each mis-
judgment here can cause two false positives instead

of one. Let boundary-offset be the absolute dif-

ference between the nearest boundary in detection

result and every boundary in the ground truth.

The distribution over all testing trials is shown in

Table 3.

The results show that our classification scheme

has consistent performance over various dataset;
models trained on one clip generalize well to other

clips. The classification accuracy is above 80% for

every clip, and more than 60% of the boundaries

are detected within a 3-s ambiguity window (Ta-

ble 3). Compared to the heuristic rules described

in Section 3.1, testing accuracy improves 1%,

15%, and 18% for clips Korea B, Argentina and

Espana (trained on Korea A), respectively. Typi-
cal errors in the current algorithm are due to

model breakdowns that feature values do not al-



Table 3

Boundary offset distribution

Offset (s) [0,3] (3,6] (6,10] (10,25] (25,50] >50

Percentage (%) 62 12 5.8 13 6.7 0.7
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ways reflect semantic state of the game such as a
brief switch of play/break without significant

change in features.
6. Conclusion

In this paper, we presented new algorithms for

soccer video segmentation and classification. First,
play and break are defined as the basic semantic

elements of a soccer video; second, observations of

soccer video syntax are described and feature set is

chosen based on these observations; and then,

classification/segmentation is performed with

HMM followed by dynamic programming. The

results are evaluated in terms of classification

accuracy and segmentation accuracy; extensive
statistical analysis show that classification accuracy

is about 83.5% over diverse data sets, and most of

the boundaries are detected within a 3-s ambiguity

window. This result shows that high-level video

structures can be computed with high accuracy

using compressed-domain features and generic

statistical tools, domain knowledge plays the role

of matching features to the domain syntax and
selecting the statistical models in capturing the vi-

sual variations and temporal dynamics of the video.

The algorithms leaves much room for

improvement and extension: (1) There are other

relevant low-level features that might provide

complementary information and may help im-

prove performance, such as camera motion, edge,

or audio features; (2) Higher-level object detectors,
such as goal and whistle detection, can be inte-

grated; (3) It will be worthwhile to investigate

unsupervised learning scenarios without extensive

training.
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