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Abstract
We introduce a novel group elevator scheduler based on an explicit decision-theoretic calcula-
tion for the expectation of any polynomial function of passengers’ waiting times, marginalized
over sources of uncertainty in the system state. The same framework can be used to iden-
tify risky assignments that have low expected costs but may cause some individuals to be
"stranded" with excessive waits for service. The resulting scheduler avoids risky assignments
while minimizing average passenger waits.Experimental results demonstrate that the method
can reduce the variance of waiting times and the fraction of passengers wiating excessively
in comparison with risk-neutral schedulers, while still achieving better waiting times than
reference ETA controllers.
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ABSTRACT  
  
We introduce a novel group elevator scheduler based on an explicit decision-
theoretic calculation for the expectation of any polynomial function of passengers' 
waiting times, marginalized over sources of uncertainty in the system state. The 
same framework can be used to identify risky assignments that have low expected 
costs but may cause some individuals to be "stranded" with excessive waits for 
service. The resulting scheduler avoids risky assignments while minimizing average 
passenger waits. Experimental results demonstrate that the method can reduce the 
variance of waiting times and the fraction of passengers waiting excessively in 
comparison with risk-neutral schedulers, while still achieving better waiting times 
than reference ETA controllers. 
 

 
1. INTRODUCTION 

Elevator passengers expect efficient service within acceptable time limits, and it is the job of a 
group elevator scheduler to provide such service when an elevator bank is installed in a 
building. Exactly what is understood by “efficient” service is open to interpretation. 
Ultimately it reduces to a matter of subjective preferences of elevator passengers (and of the 
building developer). This paper examines mathematical models for passengers’aversion to 
excessively long waits, and develops computationally efficient methods that can be employed 
to lower the risk of such waits while maintaining an overall high quality of service. 

The average waiting time (AWT) of passengers is by far the most common optimization 
criterion for quality of service in group elevator control (GEC) (Barney 2003). The implicit 
assumption behind minimizing AWT is that passengers' (dis)satisfaction from service is 
proportional to the AWT: e.g., if passengers are made to wait twice as long, they will be twice 
as dissatisfied. Related criteria such as the average journey time (AJT) and the average system 
time (AST=AWT+AJT) are also occasionally used.  

Methods for reducing excessively long waits usually revolve around manipulating some 
statistics that characterize the distribution of waits. It is easy to see that minimizing AWT has 
also the implicit effect of minimizing the fraction of people waiting more than a specified 
threshold, if shape of the distribution of waiting times does not change. For example, if this 



distribution were exponential, as has been suggested for classical traffic control systems  
(Halpern 1992), then decreasing its mean while preserving its exponential nature would 
reduce the fraction of long waits, because the shape of the distribution is wholly determined 
by the mean.  

In practice the distribution of waiting times is more complicated, and must be characterized 
by a mean, a variance, and possibly higher-order moments.  This presents many ways to shift 
the distribution to reduce the fraction )(θf  of passengers who wait more than some threshold 
θ , for example, holding the mean constant and reducing the variance (Halpern 1992; Barney 
2003), and directly minimizing the second moment (SSWT; sum of squared waiting times). 

Minimizing SSWT is the aim of the DLB, HUFF, and FIM algorithms due to Bao et al. 
(1994) for the case of down-peak traffic. The  reinforcement-learning algorithm due to Crites 
and Barto (1998) also used quadratic waits, but exponentially discounted in the future. These 
algorithms are based on the observation that it is much more plausible that passengers’ 
dissatisfaction with elevator service is not directly proportional to AWT (respectively, AJT or 
AST), but can be represented better by some other (possibly non-linear) function of it. In 
particular, user dissatisfaction is likely to grow supralinearly in AWT, perhaps exponentially 
or as some power of AWT greater than 1. Such optimization criteria have the direct effect of 
penalizing long waits much more than short waits, thus implicitly discouraging long waits and 
tilting the distribution of waits towards lower values. 

The use of these two strategies – minimizaton of variance and the use of supralinear 
optimization criteria – is known under the common name of risk-averse control (Bertsekas 
2000). Section 2 analyzes the specific application of risk-averse control (RAC) to the field of 
GEC, and discusses the significant computational difficulties encountered upon attempting to 
modify one of the known scheduling methods for the purposes of RAC. This section also 
shows that many instances of risk-averse control  can be reduced to computing higher 
statistical moments of the AWT with respect to the uncertainty in passenger destinations. 
Section 3 presents the main contribution of this paper: an efficient decision-theoretic 
algorithm for the computation of these moments. It also provides a solution to the related risk-
averse control problem of minimizing AWT under the (soft) constraint that no passenger’s 
expected waiting time should exceed a pre-specified value. Section 4 shows some 
experimental results from the execution of these algorithms in a detailed simulator, and 
discusses their performance with respect to widely known risk-neutral benchmark controllers. 
Section 5 closes the paper with some of the remaining open questions and challenges in risk-
averse group elevator scheduling. 

2. RISK-AVERSE CONTROL OF ELEVATOR BANKS 

As discussed above, two of the main approaches to risk-averse control are based on 
minimization of the variance of waiting time and/or minimization of a superlinear function of 
AWT. This section focuses on the practical difficulties arising in the computation of variances 
and non-linear functions of waiting times, and demonstrates how both approaches reduce to 
the computation of the statistical moments of AWT.    



Variance-Based Strategies  

There are three often used strategies for variance optimization (Puterman 1994). One option is 
to make decisions that minimize variance subject to the constraint that the mean cost be no 
greater than a specified threshold. The converse idea is to make decisions that minimize cost 
subject to the constraint that the variance be no greater than a specified threshold. Finally, a 
third idea is to form a new decision criterion that is a weighted average of mean and variance, 
with user-specified weights.  

In GEC, the cost to be minimized is usually AWT. Halpern (1993) described a scheduler 
based on the last strategy, but replaced the waiting times variance estimate with an estimate of 
the longest hall-call waiting time, on the presumption that estimating the variance directly is 
computationally infeasible. Indeed, the difficulty of estimating the waiting times variance has 
been a major impediment to the more common use of risk-averse controllers — providing a 
solution to this problem is one of the main objectives of this paper.  

The reason why it is hard to estimate variances is that traditional GEC computational methods  
almost universally ignore the probabilistic nature of passengers' waiting times, which is 
equivalent to assuming that the variance of these times is zero—a completely wrong and 
unintended consequence. To illustrate it, consider the decision-making process in a well-
known scheduling algorithm such as Estimated Time to Arrival (ETA), many variants of 
which have been employed in the elevator industry since the algorithm’s inception in the 
1970s. The objective of ETA is to assign a car to a new hall call  in a manner that minimizes 
the AWT of all existing and future passengers from the current moment on. In order to deal 
with the uncertainty in destination floors arising from the use of two-button hall-call panels, 
ETA makes a major simplification and assumes that the elevator car will follow a single, 
deterministic trajectory. In reality, the actual path followed by a car (given its current 
passenger pick-up commitments)  is stochastic, because the intended destination floors of 
each waiting passenger are  unknown random variables. In general, the number of possible 
future car paths is exponential in the number of passengers waiting in the halls or building 
floors, whichever is less. In order to combat this combinatorial explosion of paths to be 
considered, the ETA algorithm analyzes only a single path, assuming that it will happen with 
probability one, and ignores other possible paths. For definiteness, each waiting passenger is 
assigned a proxy destination floor (heuristics vary), and the waiting times of known hall calls 
are then computed along the resulting proxy single path. The average such waiting time is 
taken as a surrogate measure of the expected waiting time of all passengers to be transported 
by this car. 

Aside from the very questionable accuracy of such a simplification, another unintended effect 
is that the assumption for a single car trajectory entails that the variance of the individual 
waiting times is zero. Indeed, if there is no variability in the time necessary to reach each 
floor, the variance of waiting times should be zero – an obviously incorrect conclusion. What 
is necessary, then, is a method that does not ignore blindly the variability in car trajectories, 
but accounts properly for their probabilistic nature. In practice, what would suffice is an 
algorithm to compute the statistical moments of waiting times, i.e., the mathematical 
expectation of the first and second powers of individual waiting times with respect to the 
uncertainty in passengers destinations. More formally, we are considering a particular car i 
and a set of hall calls ijh , iNj ,1=  currently existing at floors ija  and  assigned to this car, 
plus another a set of existing car calls already constraining the motion of the car in a known 



manner. Let the corresponding (unknown) destination floors of calls ijh  be denoted by the 
variables ijd , and let the vector variable ],,,[ 11 iiNiii dddD K=  denote a particular valid set of 
possible destinations for all hall calls assigned to car i. Once the destinations of passengers are 
fixed, the waiting time to answer call ijh  can be determined precisely. In order to reflect the 
dependency of waiting time on iD , we will denote it by )( iij Dw . When ijw  is used without 

iD , we will assume it to be a random variable denoting the waiting time for hall call ijh . 

The objective is to estimate the expected  waiting time ][ ijDij wE
i

=µ  until the car reaches 
each of the floors ija , counted from the time hall call ijh  actually occurred, and the expected 

squared waiting time ][ 2
ijDij wEs

i
= . The expectation ][⋅DE  is taken with respect to all 

possible sets of destinations iD , weighted according to their respective probabilities Pr( iD ). 
Note that the expected squared waiting time ijs  is not equal to the square of the expected 

waiting time 2
ijµ , because expectation and raising to the second power do not commute. 

Instead, their difference 22
ijijij s µσ −=  is exactly the variance of the waiting time for call ijh , 

since the variance of any random variable is equal to the difference between its second 
uncentered moment and the square of its first moment (the mean). If ijµ  and ijs  can be found 
for each car i for a particular assignment of calls to cars, the estimated AWT µ  for answering 

all outstanding hall calls can then be computed as ∑∑
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scheduling decisions can be risk-neutral and can be based only on the AWT µ  resulting from 
each possible scheduling decision, or the individual variances of waiting times ijσ  can be 
included in the optimization criterion as well, to encourage risk-averse decisions. 

Supralinear Optimization Functions 

The other described method for risk-averse control, that of optimizing superlinear functions of 
waiting time, can also be reduced to the computation of the statistical moments of waiting 
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21 µ (squared expected waiting times) does not optimize the expected squared 

waiting time, though it is often used in hopes of penalizing and suppressing excessive waits. 
Because S equals V plus the variances, minimizing V puts no direct pressure on the variance 
of waiting times—in principle one can reduce V and yet incur some spectacularly long waits. 
Yet many algorithms use V instead of S, e.g. those in (Bao et al., 1994), because it is easy to 
make an (admittedly imprecise) estimate of V from the surrogate estimates of individual 
waiting times ijµ  produced by ETA on a single path. In contrast, there has been no efficient 
way to compute  S until now. 



Computing and minimizing other non-linear functions of waiting time is more complicated, 
but only a little more so. In general, any continuous differentiable nonlinear function g(w) of 
waiting time w on a fixed interval can be approximated arbitrarily well by means of 
polynomials. A Taylor-series expansion around a particular point, for example zero, is one of 
the simplest approximations. It is also well known that Chebyshev polynomials of degree n 
provide the best approximation accuracy in a least-squares sense on a fixed interval among all 
polynomials of degree n, and Chebyshev coefficients are easy to compute (Press et al. 1992). 
Provided that such an approximation has been performed, the function can be represented as 
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where the expectation is taken with respect to the uncertainty in the system (hall-call 
destinations) for all shafts, represented by ],,,[ 21 CDDDD K= , and ][)( k

ijD
k

ij wEm
i

=  is the k-

th raw (uncentered) moment of the waiting time of hall call ijh , with ijijm µ=)1(  being the first 

moment, ijij sm =)2(  being the second, etc.  

3. AN ALGORITHM FOR COMPUTING MOMENTS OF WAITING TIME 

The previous section demonstrated that the optimization of common performance objectives 
for the purposes of risk-averse GEC can be reduced to the computation of several statistical 
moments of waiting time. In short, we need to compute the expected values of the first few 
powers of waiting time with respect to the uncertainty in the system, then make decisions that 
minimize their weighted sum. The central problem, then, becomes how to compute these 
moments efficiently, avoiding the combinatorial explosion that would result from an explicit 
enumeration of all possible paths an elevator car can take in order to serve the known origin 
and unknown destination floors of the passengers assigned to it.  

The key to solving this problem efficiently is to divide the trajectory of the car into stages and 
use the method of dynamic programming to compute the cost-to-go for each stage.  In the 
case of expected waiting time, the cost-to-go is the increase in waiting times incurred from 
any particular stage onwards. The key observation is that there may be many different system 
paths to the same stage, but the cost-to-go is invariant to how the system got there. This is 
called the Markov property. A trivial example in the elevator domain is the point at which a 
car has emptied out and changed direction—how it got to be that way is immaterial to the 
remaining wait times of the people it is about to pick up. The essence of dynamic 
programming is that these cost-to-go values can be cached and reused so efficiently that the 
exponentially large set of possible system trajectories can be evaluated in linear time. 
Nikovski and Brand (2003) devised such an algorithm to embed the elevator system in a 
Markov chain and compute expected waiting times considering all possible passenger 
destinations and car paths.  We refer readers to the original paper for details; here we develop 
an extension to compute arbitrary higher moments of waiting time.  

The essential step of the DP algorithm, called a Bellman back-up, computes the cost-to-go of 
a particular state as the expected value of the sum of the direct costs on all outgoing 



transitions and the costs-to-go of the successor states at the end of these transitions. For 
example, when the objective is to compute the expected waiting time, the cost-to-go W(s) of a 
state s has the meaning of residual cumulative waiting time from that state on for all 
passengers h among those in the set )(sH who are still waiting in s: ∑

∈

=
)(
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sHh

hwEsW . In this 

case, the Bellman back-up has the form ∑ +=
'

)]'()',()[',Pr()(
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the cost-to-go of the current state s, the sum ranges over all possible successor states s’ that 
the system transitions to with respective probabilities Pr(s,s’) and immediate costs C(s,s’). 
The probabilities are determined by the number of people inside the car and their likelihood to 
stop at the next floor vs. going on. The immediate cost of a transition (segment) is simply the 
duration )',( ssw∆ of this segment in seconds, times the number )(sH  of people still waiting 
at the current state s. After the costs-to-go of all states are backed-up as described, )( 0sW  of 
the initial state 0s of the Markov chain is equal to the expected cumulative waiting time of all 
passengers assigned to the car. 

Now we can extend the algorithm to compute higher moments of the waiting time, for the 
purposes of variance minimization or optimization of nonlinear performance functions. When 
the objective is to compute the expected squared  waiting time, the meaning of the cost-to-go 
of a state changes to the residual cumulative expected squared wait from that state on. We 
will denote this function by ∑∑
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down by the squared waiting times of individual  passengers )(sHh∈ . The cost-to-go of a 
particular passenger h who is still waiting at state s can easily be expressed by means of the 
binomial expansion:   
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In this equation, everything is known at the time of back-up: the immediate costs (segment 
durations) of all outgoing transitions are constants, )'()1( sWh is the expected waiting time of 
passenger h from state s’ on, and has been found in the basic version of  the DP algorithm 
(performed separately for each waiting passenger), and finally, )'()2( sWh is the residual 
squared wait of successor states s’, and should be known if Bellman back-ups are performed 
in the correct order, namely backwards from the terminal state to initial one. The above 
equation defines the form of the Bellman back-up for the computation of the second moment 
of waiting times. As can be seen, it uses partial estimates (costs-to-go) obtained during the 
computation of the first moment, so moments should be computed in increasing order, since 
they “bootstrap” each other. Third and higher moments are also easy to compute, following 
similar binomial expansions, and reusing partial estimates from lower moments.   

Another possible extension of the algorithm allowed by the DP method is the computation of 
the longest possible waiting time, so that the scheduler could attempt to avoid it in case it 
exceeds a pre-specified threshold. This can easily be done by defining the cost-to-go 

)(max sWh of state s to be the longest possible wait of a passenger from the current state on, 
again computed individually for each passenger. Instead of finding the expectation of waiting 
time, it would suffice for the Bellman back-up to find its maximum: 
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the longest wait possible for passenger h. 
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Figure 1. Comparison between two decision-theoretic schedulers minimizing different 
moments of waiting time. ESA-DP minimizes expected waiting time, while ESSW 

minimizes the expected square of waiting time, and indirectly its variance. 

4. EXPERIMENTAL RESULTS 

A risk-averse scheduler, ESSW, implementing the described method for computation and 
minimization of the second moment (square) of waiting time was compared experimentally 
with an identical decision-theoretic scheduler, ESA-DP (Nikovski and Brand 2003), which 
minimized simple expected AWT and was thus risk-neutral.  The comparison was performed 
in ELEVATE 5.0, supplied by Peters Research, Ltd., and covered three buildings (10 floors/3 
shafts, 15 floors/6 shafts, and 20 floors/8 shafts), in four different regimes (up-peak, down-
peak, interfloor, and uniform), with three arrival rates and ten different arrival streams, 
resulting in a total of 360 simulated hours per scheduler. Each of the cars had a rated speed of 
3 m/s, rated acceleration of 1 m/s2 and jerk 1.13 m/s3. . The results are shown in Figure 1, 
where each point is the average value of the respective parameter over all passengers in a one-
hour simulation. Table 1 summarizes the averages over all 360 experimental runs. It can be 
seen that although the risk-averse scheduler (ESSW) is not necessarily much superior to the 
risk-neutral one (ESA-DP) in terms of pure AWT, it is still able to achieve lower SSWT and 
variance of waiting times, which in its turn leads to a lower fraction of excessive waits.     



Table 1. Comparison between risk-neutral and risk-averse scheduling. 

Algorithm AWT SSWT Variance % > 60s
ESA-DP, risk-neutral 24.78 1737.07 878.03 9.04
ESSW, risk-averse 23.62 1273.05 589.39 7.77

5. CONCLUSION 

We have presented a decision-theoretic algorithm for computing estimates of any statistical 
moment of waiting time, and a method for using these moments to optimize performance 
criteria corresponding to different user attutudes towards long waits. The main simplifying 
assumption of ETA, that elevator cars move deterministically, has beens eliminated, which 
opens the possibility for much more precise estimates of  arbitrary functions of waiting times 
specified by elevator designers. The probabilistic approach to elevator control, combined with 
the significantly increased computational capabilities of modern embedded controllers, could 
possibly lead to a new generation of decision-theoretic group elevator schedulers.    
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