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Abstract

We develop an object trajectory pattern learning method that has two significant advantages over
past work. First, we represent trajectories in the HMM parameter space which overcomes the
trajectory sampling problems of the existing methods. The proposed features are more expres-
sive and enable detection of trajectory patterns that cannot be detected with the conventional
trajectory representations reported so far. Second, we determine common trajectory paths by
analyzing the optimal cluster number rather than using a predefined number of clusters. We
compute affinity matrices and apply eigenvalue decomposition to find clusters. We prove that
the number of clusters governs the number of eigenvectors used to span the feature similarity
space. We are thus able to automatically compute the optimal number of patterns. We show that
the proposed method accurately detects common paths for various camera setups.
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ABSTRACT

We develop an object trajectory pattern learning method
that has two significant advantages over past work. First, we
represent trajectories in the HMM parameter space which
overcomes the trajectory sampling problems of the existing
methods. The proposed features are more expressive and
enable detection of trajectory patterns that cannot be de-
tected with the conventional trajectory representations re-
ported so far. Second, we determine common trajectory
paths by analyzing the optimal cluster number rather than
using a predefined number of clusters. We compute affinity
matrices and apply eigenvalue decomposition to find clus-
ters. We prove that the number of clusters governs the num-
ber of eigenvectors used to span the feature similarity space.
We are thus able to automatically compute the optimal num-
ber of patterns. We show that the proposed method accu-
rately detects common paths for various camera setups.

1. INTRODUCTION

Past work on automatic detection of events using trajectory
based features has mostly consisted of extraction of trajecto-
ries followed by a supervised learning based classification.
There are several attempts to interpret the object activity.
For example, in [1] an activity recognition method based on
view-based template matching techniques is developed. In
this method, action is represented by a temporal template
which is a static vector-image computed from accumula-
tive motion properties at each point of the image sequences.
An action is recognized by matching this template with the
templates of known actions. Davis et al. [2] represent sim-
ple periodic events (e.g., walking) by constructing dynamic
models of periodic pattern of people’s movements and is de-
pendent on the robustness of tracking. The Hidden Markov
Model (HMM) has also been applied to activity recogni-
tion. Starner et. al [5] use an HMM to represent a simple
event and recognize this event by computing the probabil-
ity that the model produce the visual observation sequence.
The distributions of object trajectories are clustered in [4].
The resulting model included hundreds of clusters of ob-
ject trajectories. Stauffer et al. [6] estimated a hierarchy of

similar distributions of activity based using a co-occurrence
clustering. Though both of these systems learned clusters
corresponding to similar activity, they describe an objects
entire path through the environment.

Note that the above algorithms only use abstract rep-
resentations of trajectories sometimes combined with other
cues such as skin color, etc. Although the extraction of tra-
jectories and boundaries is well studied, little investigation
on the secondary outputs of a tracker has been done.

In this paper, we target a more attainable goal of de-
tecting common patterns using improved tracking features.
Since existing trajectory-based features are insufficiently ex-
pressive, they cannot be used to identify certain events such
as starts and stops of motion that require a more detailed
characterization. We are thus motivated to develop more
expressive features. In addition to trajectory, we introduce
parameter space representations of tracked objects. We find
however that our proposed features have high dimensional-
ity. Since conventional learning methods are adversely af-
fected by high dimensionality, we are motivated to develop
a new approach to clustering that is much more robust to
increase in the dimensionality of the feature space.

Furthermore, unlike the past work cited above we em-
ploy an unsupervised learning method. It is based on eigen-
vector decomposition of the feature similarity matrices. We
prove that the number of clusters governs the number of
eigenvectors used to span the feature similarity space. We
are thus able to automatically compute the optimal number
of clusters. The computational complexity is lower than the
k-means in case the dimensionality of the features is respec-
tively higher than the number of features.

2. TRAJECTORIES TO HMM FEATURE SPACE

The trajectoryT (t) = [x(t) y(t)] of an object is represented
as the collection of image coordinates that correspond to
the center-of-masses of the shape in the consecutive frames.
The shape of the object is often parameterized by a certain
number of variables, e.g. upper-left and lower-right coordi-
nates in case of a box, and perpendicular cords in case of an
ellipsoid. In this paper, we represent trajectories, which we



Fig. 1. Flow diagram.

obtained by an object tracker presented in [7], in terms of
parameter space features.

Since feature clustering requires feature vectors to have
equal lengths (dimensions), features that have varying sizes
are transferred to a parameter space. This parameter space
is spanned using continuous HMM variables. In order to de-
fine an HMM, we used the following elements; 1) A set of
prior probabilitiesπ, 2) A set of state transition probabilities
B, 3) Mean, variance and weights of mixture modelsH . We
keep the structure of the HMM, the number of states, and
number of mixture model constant. By training a separate
HMM for each feature, we construct a parameterized repre-
sentation for a set ofW frames, which are included within
a moving window along the time axis centered around the
current framet. To decrease computation, we use overlap-
ping windows.

We construct a vectorγf (t) = (π, B, H)f (t) using the
HMM state transfer probabilitiesB, model means statistics
and model weightsH , and the prior probabilitiesπ. The
window size is chosen such that the targeted activity fits in
the duration of window. Note that,γf (t) is the best fit for the
features within the window since at the training phase we
used those features. We will evaluate the fitness off(t1) to
γf (t2) andf(t2) to γf (t1) when we measure the similarity
of the featuresf(t1) andf(t2).

3. FEATURES TO PATTERNS

A flow diagram of the event detection process is shown in
Fig. 1. First, the HMM parameters are determined for each
trajectory. We compute affinity matrices that represents the
similarity of two trajectories. The similarity is computed us-
ing parameter space. The affinity matrices are decomposed
to determine the largest eigenvectors and this is used to ob-
tain the clusters of trajectories. After clustering, a deviation
score is assigned to each trajectory. The trajectories that has
marginal scores are then selected as outliers.

For each trajectory, an affinity matrixA is constructed.
The elementsaij of the matrixA are equal to the similarity
of the corresponding trajectoriesi andj. The similarity is

defined asaij = e−d(i,j)/2σ2
. Note that matrixA ∈ Rn×n

is a real semi-positive symmetric matrix, thusAT = A.
In case of the HMM parameter based features, the dis-

tanced(i, j) is measured using a mutual fitness score of the
models and input features as

d(ti, tj) = |P (f(t1)|γf (t1)) + P (f(t2)|γf (t2))
−P (f(t1)|γf (t2)) − P (f(t2)|γf (t1))|.(1)

3.1. Eigenvector Decomposition

The decomposition of a square matrix into eigenvalues and
eigenvectors is known as eigenvector decomposition. For
the affinity matrixA there aren eigenvaluesλ with asso-
ciated eigenvectorsv which satisfyAv = λv. To find
these eigenvalues, we rewrite the previous equation as(A−
λI)v = 0 and determinant is computeddet(A− λI) = 0.

Let V ≡ [v1 v2 .. vn] be a matrix formed by the
columns of the eigenvectors. LetD be a diagonal matrix
diag[λ1, λ2, .., λn]. Lets also assumeλ1 ≥ λ2 ≥ ..λn.
Then the eigenvalue problem becomes

AV = [Av1 .. Avn] = [λ1v1 .. λnvn] = V D (2)

andA = V DV −1. SinceA is symmetric, the eigenvectors
corresponding to distinct eigenvalues are real and orthogo-
nalV V T = V T V = I, which impliesA = V DV T .

The main idea behind iterative computation is the fol-
lowing. Suppose we have some subspaceK of dimension
k, over which the projected matrixA has Ritz valueθk and
a corresponding Ritz vectoruk. Let us assume that an or-
thogonal basis forK is given by the vectorsv1,v2, ...,vk

(already determined eigenvectors).

3.2. Clustering

Although eigenvector based clustering [3] is addressed be-
fore in the literature, to our knowledge no one has estab-
lished the relationship between the optimal clustering of the
data distribution and the number of eigenvectors that should
be used for spanning before. Here we show that the number
of eigenvectors is proportional to the number of clusters.

Let a matrixPk be a matrix in a subspaceK that is
spanned by the columns ofV such asPk = [v1 v2 .. vk, 0]
whereV is the orthogonal basis satisfiesA = V DV T .
Now, we define vectorspn as the rows of the truncated ma-
trix Pk as

Pk =




p1

...
pn


 =




v11 · · · v1k 0 · · ·
v21 · · · v2k 0 · · ·
...

...
vn1 · · · vnk 0 · · ·


 (3)

We normalize each row of matrixPk bypij ← pij/
√∑k

j p2
ij .

Then a correlation matrix is computed using the normalized



rows by Ck = PkPT
k . For a givenPk, the value ofpij

indicates the degree of similarity between the trajectoryi
and trajectoryj. Values close to one correspond to a match
whereas negative values and values close to zero suggest
that trajectories are different. Letε be a threshold that trans-
fers values of matrixCk to the binary quantized values of
an association matrixWk as

wij =
{

1 cij ≥ ε
0 cij < ε

(4)

whereε ≈ 0.5. Then clustering becomes grouping the tra-
jectories that have association values equal to onewij = 1.

To explain why this works, remember that eigenvectors
are the solution of the classical extremal problemmaxvT Av
constrained byvT v = 1. That is, find the linear combina-
tion of variables having the largest variance, with the restric-
tion that the sum of the squared weights is 1. Minimizing
the usual Lagrangian expressionvT Av − λ(vT v − 1) im-
plies thatAv = λv. Thus,v is the eigenvector with the
largest eigenvalue.

As a result, when we project the affinity matrix columns
on the eigenvectorv1 with the largest eigenvalue and span
K1, the distribution of theaij will have the maximum vari-
ance therefore the maximum separation. Keep in mind that
a threshold operation will perform best if the separation is
high. To this end, if the distribution of values have only two
distinct classes then a balanced threshold passing through
the center will divide the points into two separate clusters.
With the same reasoning, the eigenvectorv2 with the sec-
ond largest eigenvalue, we will obtain the basis vector that
gives the best separation after normalizing the projected space
using thev1 sincev1 ⊥ v2.

The values of the thresholds should still be computed.
We obtained projections that gives us the maximum sep-
aration but we did not determine the degree of separation
i.e. maximum and minimum values of projected values on
the basis vectors. For convenience, we normalize the pro-
jections i.e. therows of current projection matrix (Vk) as
pTp = 1 and then compute the correlationV T

k Vk. Correla-
tion will make rows that their projections are similar to get
values close to 1 (equal values will give exactly 1), and dis-
similar values to 0. By maximizing the separation (distance)
between the points in different clusters on an orthonormal
basis, we pushed for the orthogonality of points depending
their clusters;pipj ≈ 1 if they are in the same cluster, and
pipj ≈ 0 if they are not.

As opposed to using only the largest or first and second
largest eigenvectors (also the generalized second minimum
which is the ratio of the first and the second depending the
definition of affinity), the correct number of eigenvectors
should be selected with respect to the target cluster number.
Using only one or two does fail for multiple clusters more
than 3 as demonstrated in the next section.

After each eigenvalue computation of matrixA in the
iterative algorithm, we compute a validity scoreαk using
the clustering results as

αk =
k∑
c

1
Nc

∑
i,j∈Zc

pij (5)

whereZc is set of trajectories included in the clusterc, Nc

number of trajectories inZc. The validity score gets higher
values for the better fits. Thus, by evaluating the local max-
ima of this score we determine the correct cluster number
automatically. Thus, we answer the natural question of clus-
tering; ”what should be the total cluster number?”

As a summary, the clustering for a given maximum clus-
ter numberk∗ includes

1. ComputeA, approximate eigenvectors using Ritz val-
uesλk ' θk, find eigenvectorsvk for k = 1, .., k∗,

2. FindPk = VkV T
k andQk for k = 1, .., k∗,

3. Determine clusters and calculateαk,

4. Computeα′ = dα/dk and find local maxima.

The maximum cluster numberk∗ does not affect the deter-
mination of the fittest cluster; it only limits the maximum
number of possible clusters that will be searched.

A question arise that why we preferred the eigen cluster-
ing to the ordinary k-means? K-means requires to the total
cluster number known before starting the iterative cluster
center update mechanism. Existing cluster validity scores
of k-means are effective only when the clusters are compact
and well separated. It may oscillate between cluster center
since it needs a minimum residual threshold. Due to the fact
that it models clusters by their centers, it makes a a strict
Normal distribution assumption. In eigen-decomposition,
mutual inter-feature distance as opposed to center-distance
is used. In k-means, different initial values may cause dis-
similar clusters. Besides, k-means can stuck to local op-
tima. Therefore, k-means based cluster number estimation
is not always accurate. Most importantly, the computational
complexity of k-means increases with the larger sizes of the
feature vectors.

4. EXPERIMENTS AND DISCUSSION

We first used a generic 1D sequence to demonstrate the
properties of eigen decomposition.

We use the silhouette validity measure to evaluate fit-
ness of the clustering results of the k-means. The silhouette
index is given as

Sk = 1−
n∑
i

h(i)− g(i)
max{g(i), h(i)} (6)
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Fig. 2. First row: k-means clustering for the cluster (a) 3, (b)
7 clusters. Second row: (c) eigen decomposition clustering
using 2 largest eigenvectors i.e.k = 2, (d) for k = 7. Third
row: cluster validity measures for 2-20 clusters (e) Eigen
clustering method evaluated by the validity score proposed
in eigen clustering section. K-means clustering measured
by (f) silhouette measure.

whereg(i) average dissimilarity of trajectoryi to all other
trajectories in the same cluster;h(i) is the minimum of av-
erage dissimilarity of trajectoryi to all trajectories in other
closest cluster.

In figure 2, we illustrate experimental results that indi-
cate that our technique finds the correct number of clusters
even in cases where the K-means will fail. Furthermore,
we compensate for the high dimensionality of our proposed
features by devising an eigenvector based clustering tech-
nique which does not grow with the dimensionality of the
feature vector unlike K-means clustering. Figure 3 presents
the path detection results for two camera setups using 53
and 39 trajectories respectively.

In conclusion, the main contributions of this paper are:

• We proposed a new set of more expressive features
based on trajectory that enable detection of trajectory
patterns that could not be detected using conventional
representations.
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Fig. 3. First row: (a) sample image, (b) detected paths. Sec-
ond row: (c) sample image, (d) detected paths.

• We showed that the number of largest eigenvalues (in
absolute value) to span subspace is one less than the
number of clusters.

• We proposed an unsupervised clustering framework
based on the above and successfully applied it to pat-
tern detection. The proposed framework is not ad-
versely affected by increases in feature vector dimen-
sionality unlike K-means clustering.
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