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Event Detection by Eigenvector Decomposition Using Object and Frame
Features

Fatih Porikli Tetsuji Haga

Abstract

We develop an event detection framework that has two sig-
nificant advantages over past work. First, we introduce an
extended set of time-wise and object-wise statistical fea-
tures including not only the trajectories but also histograms
and HMM’s of speed, orientation, location, size, and as-
pect ratio. The proposed features are more expressive and
enable detection of events that cannot be detected with
trajectory-based features reported so far. Second, we intro-
duce a spectral clustering method that can estimate the opti-
mal number of clusters automatically. This novel clustering
technique that is not adversely affected by high dimension-
ality. Unlike the conventional approaches that fit predefined
models to events, we determine unusual events by analyzing
the conformity scores. We compute affinity matrices and ap-
ply eigenvalue decomposition to find clusters to obtain the
usual events. We prove that the number of clusters governs
the number of eigenvectors used to span the feature similar-
ity space. We also improve the feature selection process.

1. Introduction
Event detection requires interpretation of the “semantically
meaningful object actions” [3]. To achieve this task, the gap
between the numerical features of objects and the symbolic
description of the meaningful activities needs to be bridged.

Past work on event detection has mostly consisted of
extraction of trajectories followed by a supervised learn-
ing. For example, an activity recognition method that is
based on view-depended template matching was developed
in [1]. Action is represented by a temporal template, which
is computed from the accumulative motion properties at
each pixel. Davis [2] represents simple periodic events (e.g.,
walking) by constructing dynamic models of periodic pat-
tern of people’s movements. Hogg [6] clusters the distri-
butions of object trajectories. Stauffer [14] estimates a hi-
erarchy of similar distributions of activity based using co-
occurrence feature clustering. Zelnik [16] defines events as
temporal stochastic processes and targets a temporal seg-
mentation of video. Their dissimilarity measure is based on
the sum ofχ2 divergences of empirical distributions, which
requires off-line training. The number of clusters is pre-
set in event detection. Starner[13] uses a Hidden Markov

Model (HMM) to represent a simple event and recognize
this event by computing the probability that the model pro-
duce the visual observation sequence. In [8], HMM is used
for intrusion detection. Existing HMM’s based approaches
require off-line training of events. However, it is not viable
to foresee every possible event. Besides, the nature of event
varies depending on the application, thus event modeling
becomes even more challenging.

There are related praiseworthy work on spectral cluster-
ing by Ng [12] and Meila [11]. We can extend this list to
Marx [9], Kamvar [7], even back to Fiedler [4]. However,
these methods address different issues. For instance, Ng
uses k-means clustering. Unlike us, they do not investigate
the relation between the optimal number of clusters and the
number of largest eigenvectors. Meila extends Ng to gener-
alized eigenvalue representation. Although they use multi-
ple eigenvectors, the number of eigenvectors is fixed. Kam-
var addresses supervisory information, which we do not re-
quire. Marx develops coupled-clustering with fixed number
of clusters. One main disadvantage of these approaches is
that they are all limited to the equal duration trajectories
since they depend on the coordinate correspondences.

Although the extraction of trajectories is well studied,
little investigation on the secondary outputs of a tracker has
been done. Medioni [10] uses eight constant features which
include height, width, speed, motion direction, and the dis-
tance to a reference object. Visual features were also ad-
dressed by Zelnik [16] and Stauffer [14]. Zelnik uses spa-
tiotemporal intensity gradients at different temporal scales.
Stauffer uses co-occurrence statistics of coordinate, speed
and size.

Since existing trajectory-based features are insufficiently
expressive, they cannot be used to identify certain events.
We are thus motivated to develop more expressive features
that we then employ to detect events we were not able to de-
tect with conventional features. In addition to trajectory, we
introduce statistical features including the histograms and
parameter representations of tracked objects and frames.
We find however that our proposed features have high di-
mensionality. Since conventional learning methods are ad-
versely affected by high dimensionality, we are motivated
to develop a new approach to clustering that is much more
robust to increase in the dimensionality of the feature space
and has lower complexity than the conventional approaches.
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Unlike the past work cited above, we employ an unsuper-
vised learning method. It is based on eigenvector decompo-
sition of the feature similarity matrices. We show that the
number of clusters governs the number of eigenvectors used
to span the feature similarity space. We are thus able to au-
tomatically compute the optimal number of clusters.

Our method does not require definition of what is usual
and what is not. We define usual as the high recurrence of
events that are similar. As a result, unusual is the group of
events that are not similar to the rest. This enables as to
detect multiple unusual events.

The rest of the paper is organized as follows. In the Sec-
tion 2, the tracking features are introduced. Section 3 ex-
plains the formation of affinity matrices and the clustering
algorithm. Section 4 discusses the simulations.

2. Trajectories to Features

Types of the events and their indicative features vary de-
pending on the applications. However the features that we
propose below characterize most of the available low-level
properties of objects.

A trajectory is a time sequence of coordinates represent-
ing the motion path of an object over the duration (lifetime),
i.e. number of frames that object exists. These coordinates
correspond to marked positions of object shape in consec-
utive frames. A marked position often indicates the center-
of-mass (for pixel model), the intersection of main diag-
onals (for ellipsoid model), and the average of minimum
and maximum on perpendicular axes (for bounding box
model) of object region. We will adopt the following nota-
tion T : {pn} : {(x1, y1, t1), (x2, y2, t2), ..., (xN , yN , tN)}
whereN is the duration.

We propose additional tracking features that can be clas-
sified into two groups as depicted in fig. 1. The first set of
features describes the properties of individual objects. The
second set of features represents the properties of a frame
using the properties of objects existing in the frame.

Some features change their values from frame to frame
during the tracking process, e.g. the speed of an object.
Such dynamic features can be represented in terms of a nor-
malized histogram. A histogram corresponds to the den-
sity distribution of the feature, thus it contains the mean,
variance and higher order moments. However, since his-
tograms discard the temporal ordering, they are more suit-
able to evaluate the statistical attributes.

We also present HMM based representations that cap-
ture the dynamic properties of trajectories. These represen-
tations are more expressive than histograms. Since feature
comparison requires vectors to have equal dimensions, dy-
namic features that have varying dimensions are transferred
into a common parameter space using HMM’s.

Figure 1: Object tracker provides object and frame features.

2.1. Object Based Features

In spite of its simplicity, duration (lifetime) is a distinctive
feature. For instance, at a hallway camera in a surveillance
setting the suspicious event may be a left behind unattended
bag, which can be easily detected since human objects do
not stay still for extended periods of time.

The total length of the trajectory is defined as∑N
n=2 |T (n) − T (n − 1)|. This is different from the total

displacement of the object, which is equal to|T (1)−T (N)|.
A total orientation descriptor keeps the global direction of
the object. Depending on the camera setup, the length re-
lated descriptors may be used to differentiate unusual paths.
The length/duration ratio gives the average speed.

Dynamic properties of an object such as orientationφ(t),
aspect ratioδy/δx, slant (angle between vertical axis and
the main diagonal of object), size, instantaneous speed
|T (n) − T (n − k)|/k, location, and color are represented
by histograms. The location histogram keeps track of the
image coordinates where object stays most. Color may be
represented using a histogram or a few number of dominant
colors, with an additional computational cost. Using color
histogram, it is possible to identify objects. At a factory set-
ting, the person who gets dressed in a different color (e.g.
red) than the workers’ uniform (blue) may be the interesting
object.

Using the size histogram, dynamic properties of the ob-
ject size are captured, e.g. we can separate an object moving
towards the camera (assuming the size will get larger) from
another object moving away or parallel. An object moves
at different speeds during tracking, therefore the instanta-
neous speed of an object is accumulated into a histogram.
Speed is the key aspect of some events, e.g. a running per-
son where everybody walks. The speed histogram may be
used to interpret the regularity of the movement such as er-
ratically moving objects. An accident can be detected using
the speed histogram since histogram will be accumulated
at high speed and zero speed components rather than being
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Figure 2: Coordinate, speed, and orientation sequences.

distributed smoothly.
The orientation histogram is one of the important de-

scriptors. For instance, it becomes possible to distinguish
objects moving on a certain path, making circular move-
ments, etc. It is possible to find a vehicle backing up on
a wrong lane then driving correctly again, which may not
be detected using a global orientation. The aspect ratio is a
good descriptor to distinguish between human objects and
vehicles. The aspect ratio histogram can capture whether a
person crouches and stands up during its lifetime.

Using coordinates reveals spatial correlation between
trajectories, however in some situations it is more important
to distinguish shape similarity of the trajectory independent
of the coordinates. The instantaneous speed and orientation
sequences are potential features that establish shape simi-
larity even if there is a spatial translation. Thus, we define
two other sequential features; the orientation and speed se-
quences (fig. 2). These sequences are a mapping from tra-
jectory coordinates to time functions,R2 → R.

2.2. Frame Based Features
On the other hand, frame-wise features specify the charac-
teristics of objects existing within the same frame. These
features become more distinctive as the number of the visi-
ble objects in the frame increases.

The number of objects detected at the current frame is
one obvious frame-wise feature. Despite its simplicity, this
feature may give important clues about the unusual events
such as unexpectedly high number of persons in a room if
the room is usually empty, which may signify a meeting.
The total size of the objects, which indicates the total oc-
cupied area, is another feature of a frame, and it gives in-
formation similar to the number of objects. An aggregated
location histogram shows where objects are concentrated.
The dominant orientation is yet another frame feature.

The histogram of the instantaneous orientations of the
visible objects at the current frame captures the distribu-
tion of the objects direction, which can be used to detect
the changes of the flow of the traffic (e.g. wrong lane en-

tries). At a soccer game, it indicates which team is on at-
tack. The histogram of the speed of the visible objects also
defines the motion in the current frame. This feature may
capture frames where an object has different speed from the
rest. The frame-wise histogram of the aspect ratios and his-
togram of the size is defined similarly.

2.3. HMM Representations
We transfer the coordinate, orientation, and speed se-
quences into a parameter spaceλ that is characterized by
a set of HMM parameters.

An HMM is a probabilistic model composed of a number
of interconnected states in a directed graph, each of which
emits an observable output. Each state is characterized by
two probability distributions: the transition distribution over
states and the emission distribution over the output symbols.
A random source described by such a model generates a se-
quence of output symbols. Since the activity of the source
is observed indirectly, through the sequence of output sym-
bols, and the sequence of states is not directly observable,
the states are said to be hidden.

We replace the trajectory information as the emitted ob-
servable output of the above directed graph. The hidden
states then capture the transitive properties of the consecu-
tive coordinates of the spatiotemporal trajectory. The state
sequence that maximizes the probability becomes the cor-
responding model for the given trajectory.

A simple specification of anK-state{S1, S2, ..., SK}
continuous HMM with a Gaussian observation is given by:

1. A set of prior probabilitiesπ = {πi} whereπi =
P (q1 = Si) and1 ≤ i ≤ K.

2. A set of state transition probabilitiesB = {bij}, where
bij = P (qt+1 = Sj |qt = Si) and1 ≤ i, j ≤ K.

3. Mean, variance and weights of mixture models
N (Ot; µj , σj) whereµj andΣj are the mean and co-
variance of the statej.

Above, qt andOt are the state and observation at timet.
For each trajectoryT , we fit an M -mixture HMM λ =
(π, B, µ,Σ) that has left-to-right topology using the Baum-
Welch algorithm. We chose the left-to-right topology since
it can efficiently describe continuous processes. We train a
HMM model using the trajectory as the training data. As a
result, each trajectory is assigned to a separate model.

The optimum number of states and mixtures depend on
the complexity and duration of the trajectories. To provide
sufficient evidence to every Gaussian of every state in the
training stage, the lifetime of the trajectory should be much
larger than the number of mixtures times number of states
N �M×K. On the other hand, a state can be viewed as a
basic pattern of the trajectory, thus depending the trajectory
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the number of states should be large enough to conveniently
characterize distinct patterns but small enough to prevent
from overfitting.

3. Features to Events
An eventis defined as ”something that happens at a given
place and time”. We detect two types of events using the
defined features depending the type of features: 1) object
domain events, 2) frame domain events. An object domain
event is obtained by clustering objects. Similarly, a frame
based event is derived from the frame features and it corre-
sponds to a particular time instance or duration.

In addition, we propose two methods to detect unusual
and usual events. An unusual event is associated with the
distinctness of the activity. For instance, a running person
where everybody walks is interpreted as unusual as well as
a walking person where the rest run. A usual event indicates
the comnonality, e.g. a path that most people walks, etc. A
flow diagram of the detection process for usual and unusual
events is shown in figures 3 and 4.

To detect the usual events, we find object clusters by an-
alyzing the affinity matrices. For each feature, an affinity
matrix is computed using the pair-wise object similarities.
Then, matrices are added and normalized to[0 : 1] to ob-
tain an aggregated matrix. We apply eigenvector decompo-
sition to find the optimal number of clusters. We use the
decomposed matrix and then thresholded values to assign
objects in the clusters. Here we impose identical weights,
which can be adapted to specific applications by adjusting
the contribution of features using priori information.

To determine the unusual events, we analyze each affin-
ity matrix. Objects are ordered with respect to their con-
formity scores. These scores are multiplied by the weights
to inject the priori information. Finally, the objects are re-
ordered with respect to the total conformity scores, and the
objects that have low scores are identified as unusual events.
The same analogy is valid for the frame domain events.

Why Spectral Clustering?

Note that, it is possible to compute pair-wise distances for
unequal duration trajectories, which are very common for
object tracking applications, but it is not possible to map all
the trajectories into a uniform data space where the vector
dimension is constant. The ordinary clustering methods that
require uniform feature size are not applicable. Thus, we
developed the following spectral clustering based methods.

3.1. Affinity Matrix
For each feature, an affinity matrixA is constructed. The
elementsaij of this matrix are equal to the similarity of the
corresponding objectsi andj. The similarity is defined as

Figure 3: Usual events is detected using affinity matrices.

aij = e−d(i,j)/2σ2
, whered(i, j) is distance, andσ2 is a

constant scaler. Note that matrixA ∈ Rn×n is a real semi-
positive symmetric matrix, thusAT = A.

In case of the HMM parameter based features, the dis-
tanced(i, j) is measured using a mutual fitness score of the
models and input features. We define the distance between
two trajectories in terms of their HMM parameterizations as

d(T a, T b) = |L(T a; λa) + L(T b; λb)
−L(T a; λb)− L(T b; λa)| (1)

which corresponds the cross-fitness of the trajectories to
each other’s models.

The L(T a; λa), L(T b; λb) terms indicate the likelihood
of the trajectories to their own fitted model, i.e. we obtain
the maximum likelihood response for the models. The cross
termsL(T a; λb), L(T b; λa) reveal the likelihood of a tra-
jectory generated by the other trajectories model. In other
words, if two trajectories are identical, the cross terms will
have a maximum value, thus eq. 1 will be equal to zero. On
the other hand, if trajectories are different, their likelihood
of being generated from each others model will be small,
thus the distance will be high.

3.2. Detection of Usual Events
First, the affinity matrices are decomposed using a certain
number of the largest eigenvectors.

Eigenvector Decomposition

The decomposition of a square matrix into eigenvalues and
eigenvectors is known as eigenvector decomposition.

Although spectral clustering [5], [15], [12], [11] is ad-
dressed before in the literature, to our knowledge no one has
established the relationship between the optimal clustering
of the data distribution and the number of eigenvectors that
should be used for spanning. Here we show that the number
of eigenvectors is proportional to the number of clusters.
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Let V ≡ [v1 v2 .. vn] be a matrix formed by the
columns of the eigenvectors. LetD be a diagonal matrix
diag[λ1, .., λn]. Lets also assume eigenvalues areλ1 ≥
λ2 ≥ ...λn. Then the generalized eigenvalue problem is

(A−I)V = [Av1 .. Avn] = [λ1v1 .. λnvn]D = V D (2)

andA = V DV −1. SinceA is symmetric, the eigenvectors
corresponding to distinct eigenvalues are real and orthogo-
nalV V T = V T V = I, which impliesA = V DV T .

Let a matrixPk be a matrix in a subspaceK that is
spanned by the columns ofV such asPk = [v1 v2 .. vk, 0]
whereV is the orthogonal basis satisfiesA = V DV T .
Now, we define vectorspn as the rows of the truncated ma-
trix Pk as

Pk =




p1

...
pn


 =




v11 · · · v1k 0 · · ·
...

...
vn1 · · · vnk 0 · · ·


 (3)

We normalize each row of matrixPk by pij ←
pij/

√∑k
j p2

ij . Then a correlation matrix is computed us-

ing the normalized rows byCk = PkPT
k . For a givenPk,

the value ofpij indicates the degree of similarity between
the objecti and objectj. Values close to one correspond
to a match whereas negative values and values close to zero
suggest that objects are different. Letε be a threshold that
transfers values of matrixCk to the binary quantized values
of an association matrixWk as

wij =
{

1 cij ≥ ε
0 cij < ε

(4)

whereε ≈ 0.5. The clustering is then becomes grouping the
objects that have association values equal to onewij = 1.

To explain why this works, remember that eigenvec-
tors are the solution of the classical extremal problem
maxvT Av constrained byvT v = 1. That is, find the
linear combination of variables having the largest variance,
with the restriction that the sum of the squared weights is
1. Minimizing the usual Lagrangian expressionvT Av −
λ(vT v − 1) implies that(I − A)v = λIv. Thus,v is the
eigenvector with the largest eigenvalue.

As a result, when we project the affinity matrix columns
on the eigenvectorv1 with the largest eigenvalue and span
K1, the distribution of theaij will have the maximum vari-
ance therefore the maximum separation. Keep in mind that
a threshold operation will perform best if the separation is
high. To this end, if the distribution of values have only two
distinct classes then a balanced threshold passing through
the center will divide the points into two separate clusters.
With the same reasoning, the eigenvectorv2 with the sec-
ond largest eigenvalue, we will obtain the basis vector that
gives the best separation after normalizing the projected

space using thev1 sincev1 ⊥ v2. Thus, we deduct the
following lemma:

Cluster & Eigenvector Lemma: The number of largest
eigenvalues (in absolute value) to span subspace is one less
than the number of clusters.

As opposed to using only the largest or first and second
largest eigenvectors (also the generalized second minimum
which is the ratio of the first and the second depending the
definition of affinity), the correct number of eigenvectors
should be selected with respect to the target cluster num-
ber. Using only one or two does fail for multiple clusters
scenarios.

The values of the thresholds should still be computed.
We obtained projections that gives us the maximum sep-
aration but we did not determine the degree of separation
i.e. maximum and minimum values of projected values on
the basis vectors. For convenience, we normalize the pro-
jections i.e. therows of current projection matrix (Vk) as
pTp = 1 and then compute the correlationV T

k Vk. Correla-
tion will make rows that their projections are similar to get
values close to 1 (equal values will give exactly 1), and dis-
similar values to 0. By maximizing the separation (distance)
between the points in different clusters on an orthonormal
basis, we pushed for the orthogonality of points depending
their clusters;pipj ≈ 1 if they are in the same cluster, and
pipj ≈ 0 if they are not.

Estimating the Number of Clusters - Ad Hoc Method

After each eigenvalue computation of matrixA, we com-
pute a validity scoreαk using the clustering results as

αk =
k∑
c

1
Nc

∑
i,j∈Zc

pij (5)

whereZc is set of objects included in the clusterc, Nc num-
ber of objects inZc. The validity score gets higher values
for the better fits. Thus, by evaluating the local maxima of
this score we determine the correct cluster number automat-
ically. Thus, we answer the natural question of clustering;
”what should be the total cluster number?”

As a summary, the clustering for a given maximum clus-
ter numberk∗ includes

1. ComputeA, approximate eigenvectors using Ritz val-
uesλk ' θk, find eigenvectorsvk for k = 1, .., k∗,

2. FindPk = VkV T
k andQk for k = 1, .., k∗,

3. Determine clusters and calculateαk,

4. Computeα′ = dα/dk and find local maxima.

The maximum cluster numberk∗ does not affect the deter-
mination of the fittest cluster; it is only an upper limit.
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Figure 4: Unusual events is found using conformity scores.

Comparison with K-means

A question arise that why we preferred the eigenvector clus-
tering to the ordinary k-means?

Most importantly, a ‘mean’ or a ‘center’ vector cannot
be defined for trajectories that have different durations. We
only have pair-wise distances. In eigenvector decompo-
sition, mutual inter-feature distance as opposed to center-
distance is used.

Ordinary k-means may oscillate between cluster centers,
and different initial values may cause completely dissimilar
clusters. Besides, k-means can stuck to local optima. There-
fore, k-means based cluster number estimation is not always
accurate. Furthermore, the computational complexity of k-
means increases with the larger sizes of the feature vectors.
Although the eigenvector decomposition isO(2

3n3+ 1
2kn2),

it is not exponentially proportional to the size of feature vec-
tor s. (Note that we do not claim the eigenvector computa-
tion cannot be done more efficiently thanO(n3), e.g. for
m eigenvectors, the complexity reduces toO(mn2)). In
case thes ≈ n, k-means algorithm, which has complexity
of O((k log n)s + Jk2n) becomes much more demanding
than eigenvector decomposition (J is the required iterations
necessary for convergence).

3.3. Detection of Unusual Events

Using the affinity matrices, conformity scores of the objects
are computed. The conformity score of an objecti for a
given featuref is the sum of the corresponding row (or col-
umn) of the affinity matrix that belong that featureβf (i) =∑

n ain. To fuse the responses of different features, we
propose a simple weighted sum approach. We obtain a to-
tal conformity score for an object asβ(i) =

∑
f wfβf (i),

wherewf = 1 for equivalently important features. Then,
we order each object with respect to its total conformity
score. The object that has the minimum score corresponds
to most different, thus most unusual event.
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Figure 5: (a) Set of trajectories, (b) corresponding affinity
matrix, (c) validity score, (d)result of automatic clustering.

Feature Selection and Adaptive Weighting

It is also possible to select most discriminating features be-
fore the clustering stage. However feature selection requires
priori knowledge about the application and understanding
of the nature of events. Thus, we preferred to let the clus-
tering module to determine the prominent features instead
of a preselection of such features. Moreover, we will show
that truncation of the eigenbasis amplifies unevenness in the
distribution of features by causing features of high affinity
to move towards each other and other to move apart.

Our simulations show that the feature variance is an ef-
fective way to select the above feature weightswi. The fea-
ture variance is calculated from the corresponding affinity
matrix. In case the feature supplies distinctive information
the variance will have a higher value. The opposite is also
true. Thus, we assign the fusion weights as

wf =
1
n2

∑
i

∑
j

(aij − µf )2 (6)

whereaij is an element of the affinity matrixAf for the
featuref . This enables emphasizing important features.

4. Experiments
We conducted experiments using both synthetic and real
data. For HMM representation of the coordinate, speed, and
orientation. we used the same number of models and num-
ber of states. To make the simulations more challenging we
contaminated the trajectories with noise.

Fig. 8 shows three different simulated scenarios for de-
tection of unusual events: 1) an object moving in opposite
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Figure 6: Automatic usual event detection results: (a-b)
clustered vehicle trajectories indicate different pathways.
(c) red team is on attack in PETS-2003 benchmark sequence
(frames pointed by leftmost black arrow), (d) white team is
on attack (leftmost blue), (e) orientation histogram feature.
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Figure 7: Automatic unusual event detection results: (a)
frame shows the most unusual object who is crossing over
the highway, (b) other 124 trajectories and unusual objects.
No priori information is used.

direction to the rest, 2) a waiting object where other objects
moves, 3) a fast moving object. All of these scenarios may
corresponds real unusual suspicious events, for instance the
first scenario corresponds to a wrong-lane entry, the sec-
ond scenario is a browsing or stalking activity, and the third
scenario may be a running person in an airport where ev-
erybody walk. The trajectories for each case are depicted
in Fig. 8-a. The second column (Fig. 8-b) shows the fused
affinity matrices using the weightswf . We compute the
conformity scoresβ(i) from the affinity matrices, which are
given Fig. 8-d. As visible, the conformity score is found the
most unusual event accurately at each time (Fig. 8-e).

We can also find a list of most unusual events using the
conformity scores as shown in Fig. 7 where the most un-
usual events were 1) a person moving across an highway,
2) a car backing up on the shoulder, 3) a person getting out
of the car and leaving the scene, and a car slowing down in
the shoulder. We can extent this list. Note that, we didn’t
adapt the weights or define models, the algorithm found the
events automatically.

We simulated usual event detection using the trajectories
given in fig. 5-a. In this set, there are 5 distinct pathways
exist. Fig. 5-b shows the aggregated affinity matrix. We
determined the optimal number of clusters using the validity
scoreα as shown in fig. 5-c. The maximum validity score is
obtained forn = 5 which is same as the ground truth. The
clustered trajectories are given in fig. 5-d. As visible, the
proposed method successfully found the correct clusters.

We also used a real traffic setup for the detection of usual
events, which in this case becomes the pathways as depicted
in fig. 6-a,b. In case of a PETS-2003 soccer video, we used
frame features. We observed that the proposed algorithm
automatically detected the usual events as the team on the
attack. In fig. 6-c,d two frames corresponding to the two
different usual events are shown.

Since our features are more expressive, we are able to
detect events that cannot be detected using the features that
have been reported so far. Our technique thus offers an
overall substantial improvement over existing techniques in
both computational simplicity and enhanced functionality.
Our experiments (presented and others didn’t fit due to the
page limitation) prove the proposed methods are effective
and stable.

5. Discussion

We proposed a new set of more expressive features that en-
able detection of events that could not be detected using
conventional descriptors. We developed an unsupervised
clustering framework based on the above and successfully
applied it to event detection. This framework is not ad-
versely affected by increases in feature dimensionality.

We achieve clustering of variable length trajectories by

7
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Figure 8: Unusual event detection: (a) input trajectories, (b) affinity matrices, (c) conformity scores (lowest score shows the
most unusual), (d) detected most unusual trajectory (red), and (e) results in spatiotemporal space. First row simulates the
wrong lane entry, second row simulates waiting, third row simulates running.

pair-wise affinities as opposed to unstable interpolation
based approaches. We described a feature selection criteria
to amplify the contribution of discriminative features. We
also showed that the number of largest eigenvalues (in ab-
solute value) to span subspace is one less than the number
of clusters.
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