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Abstract

We develop an event detection framework that has two significant advantages over past work.
First, we introduce an extended set of time-wise and object-wise statistical features including
not only the trajectories but also histograms and HMM’s of speed, orientation, location, size and
aspect ratio. The proposed features are more expressive and enable detection of events that can-
not be detected with trajectory-based features reported so far. Second, we introduce a spectral
clustering method that can estimate the optimal number of clusters automatically. This novel
clustering technique that is not adversely affected by high dimensionality. Unlike the conven-
tional approaches that fit predefined models to events, we determine unusual events by analyzing
the conformity scores. We compute affinity matrices and apply eignenvalue decomposition to
find clusters to obtain the usual events. We prove that the number of clusters governs the number
of eigenvectors used to span the feature similarity space. We also improve the feature selection
process.
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Event Detection by Eigenvector Decomposition Using Object and Frame

Features
Fatih Porikli Tetsuji Haga
Abstract Model (HMM) to represent a simple event and recognize

this event by computing the probability that the model pro-
We develop an event detection framework that has two sig-duce the visual observation sequence. In [8], HMM is used
nificant advantages over past work. First, we introduce an for intrusion detection. Existing HMM'’s based approaches
extended set of time-wise and object-wise statistical fea-require off-line training of events. However, it is not viable
tures including not only the trajectories but also histograms to foresee every possible event. Besides, the nature of event
and HMM's of speed, orientation, location, size, and as- varies depending on the application, thus event modeling
pect ratio. The proposed features are more expressive andbecomes even more challenging.
enable detection of events that cannot be detected with There are related praiseworthy work on spectral cluster-
trajectory-based features reported so far. Second, we intro-ing by Ng [12] and Meila [11]. We can extend this list to
duce a spectral clustering method that can estimate the opti-Marx [9], Kamvar [7], even back to Fiedler [4]. However,
mal number of clusters automatically. This novel clustering these methods address different issues. For instance, Ng
technique that is not adversely affected by high dimension-uses k-means clustering. Unlike us, they do not investigate
ality. Unlike the conventional approaches that fit predefined the relation between the optimal number of clusters and the
models to events, we determine unusual events by analyzingumber of largest eigenvectors. Meila extends Ng to gener-
the conformity scores. We compute affinity matrices and ap-alized eigenvalue representation. Although they use multi-
ply eigenvalue decomposition to find clusters to obtain the ple eigenvectors, the number of eigenvectors is fixed. Kam-
usual events. We prove that the number of clusters governs/ar addresses supervisory information, which we do not re-
the number of eigenvectors used to span the feature similar-quire. Marx develops coupled-clustering with fixed number
ity space. We also improve the feature selection process. of clusters. One main disadvantage of these approaches is
that they are all limited to the equal duration trajectories
1. Introduction since they depend on the coordinate correspondences.
Although the extraction of trajectories is well studied,
Event detection requires interpretation of the “semantically little investigation on the secondary outputs of a tracker has
meaningful object actions” [3]. To achieve this task, the gap been done. Medioni [10] uses eight constant features which
between the numerical features of objects and the symbolicinclude height, width, speed, motion direction, and the dis-
description of the meaningful activities needs to be bridged.tance to a reference object. Visual features were also ad-
Past work on event detection has mostly consisted ofdressed by Zelnik [16] and Stauffer [14]. Zelnik uses spa-
extraction of trajectories followed by a supervised learn- tiotemporal intensity gradients at different temporal scales.
ing. For example, an activity recognition method that is Stauffer uses co-occurrence statistics of coordinate, speed
based on view-depended template matching was developednd size.
in [1]. Action is represented by a temporal template, which  Since existing trajectory-based features are insufficiently
is computed from the accumulative motion properties at expressive, they cannot be used to identify certain events.
each pixel. Davis [2] represents simple periodic events (e.g.,We are thus motivated to develop more expressive features
walking) by constructing dynamic models of periodic pat- thatwe then employ to detect events we were not able to de-
tern of people’'s movements. Hogg [6] clusters the distri- tect with conventional features. In addition to trajectory, we
butions of object trajectories. Stauffer [14] estimates a hi- introduce statistical features including the histograms and
erarchy of similar distributions of activity based using co- parameter representations of tracked objects and frames.
occurrence feature clustering. Zelnik [16] defines events asWe find however that our proposed features have high di-
temporal stochastic processes and targets a temporal segnensionality. Since conventional learning methods are ad-
mentation of video. Their dissimilarity measure is based on versely affected by high dimensionality, we are motivated
the sum ofy? divergences of empirical distributions, which to develop a new approach to clustering that is much more
requires off-line training. The number of clusters is pre- robustto increase in the dimensionality of the feature space
set in event detection. Starner[13] uses a Hidden Markovand has lower complexity than the conventional approaches.



Unlike the past work cited above, we employ an unsuper- Tracking Features

vised learning method. It is based on eigenvector decompo- / \

sition of the feature similarity matrices. We show that the Obiect-Based Frame-Based

number of clusters governs the number of eigenvectors used — T~ Y N\

to span the feature similarity space. We are thus able to au- Histegrams  HMM's Scalar Histograms ~ Sealer

tomatically Compute the optimal number of clusters. + Aspect Ratio + Coordinate ¢ Duration + Orientation ;ij:;:ls)er of
+ Slant + Orientation * Length + Location

Our method does not require definition of what is usual
and what is not. We define usual as the high recurrence of . g4 s Sighaliditedion
events that are similar. As a result, unusual is the group of . cepor
events that are not similar to the rest. This enables as to - size
detect multiple unusual events.

The rest of the paper is organized as follows. In the Sec-
tion 2, the tracking features are introduced. Section 3 ex-
plains the formation of affinity matrices and the clustering
algorithm. Section 4 discusses the simulations.

« Orientation = Speed * Displacement = Speed iSice

Figure 1: Object tracker provides object and frame features.

2.1. Object Based Features

2. Trajectories to Features In spite of its simplicity, duration (lifetime) is a distinctive

feature. For instance, at a hallway camera in a surveillance
Types of the events and their indicative features vary de-setting the suspicious event may be a left behind unattended
pending on the applications. However the features that webag, which can be easily detected since human objects do
propose below characterize most of the available low-level not stay still for extended periods of time.

properties of objects. The total length of the trajectory is defined as
A trajectory is a time sequence of coordinates represent—zf:’=2 |T'(n) — T'(n — 1)|. This is different from the total
ing the motion path of an object over the duration (lifetime), displacement of the object, which is equal®g1)—T (V).
i.e. number of frames that object exists. These coordinatesa total orientation descriptor keeps the global direction of
correspond to marked positions of object shape in consecthe object. Depending on the camera setup, the length re-
utive frames. A marked position often indicates the center- lated descriptors may be used to differentiate unusual paths.
of-mass (for pixel model), the intersection of main diag- The length/duration ratio gives the average speed.
onals (for ellipsoid model), and the average of minimum  pynamic properties of an object such as orientation),
and maximum on perpendicular axes (for bounding box aspect ratiasy/5z, slant (angle between vertical axis and
model) of object region. We will adopt the following nota- the main diagonal of object), size, instantaneous speed
tionT : {pn} : {(z1,y1,t1), (x2,92,2), ... (BN, yN- IN)}Y  |T(n) — T'(n — k)|/k, location, and color are represented
whereN is the duration. by histograms. The location histogram keeps track of the
We propose additional tracking features that can be clas-image coordinates where object stays most. Color may be
sified into two groups as depicted in fig. 1. The first set of represented using a histogram or a few number of dominant
features describes the properties of individual objects. Thecolors, with an additional computational cost. Using color
second set of features represents the properties of a framaistogram, it is possible to identify objects. At a factory set-
using the properties of objects existing in the frame. ting, the person who gets dressed in a different color (e.qg.
Some features change their values from frame to framered) than the workers’ uniform (blue) may be the interesting
during the tracking process, e.g. the speed of an object.object.
Such dynamic features can be represented in terms of a nor- Using the size histogram, dynamic properties of the ob-
malized histogram. A histogram corresponds to the den-ject size are captured, e.g. we can separate an object moving
sity distribution of the feature, thus it contains the mean, towards the camera (assuming the size will get larger) from
variance and higher order moments. However, since his-another object moving away or parallel. An object moves
tograms discard the temporal ordering, they are more suit-at different speeds during tracking, therefore the instanta-
able to evaluate the statistical attributes. neous speed of an object is accumulated into a histogram.
We also present HMM based representations that cap-Speed is the key aspect of some events, e.g. a running per-
ture the dynamic properties of trajectories. These represenson where everybody walks. The speed histogram may be
tations are more expressive than histograms. Since featureised to interpret the regularity of the movement such as er-
comparison requires vectors to have equal dimensions, dy+atically moving objects. An accident can be detected using
namic features that have varying dimensions are transferredhe speed histogram since histogram will be accumulated
into a common parameter space using HMM'’s. at high speed and zero speed components rather than being
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capture frames where an object has different speed from the
rest. The frame-wise histogram of the aspect ratios and his-
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y-coordinate
(=3
o
o

Speed
Orientation

2.3. HMM Representations

We transfer the coordinate, orientation, and speed se-
Figure 2: Coordinate, speed, and orientation sequences. qUeNces into a parameter spacehat is characterized by
a set of HMM parameters.
An HMM is a probabilistic model composed of a number

of interconnected states in a directed graph, each of which

distributed smoothly. emits an observable output. Each state is characterized by
The orientation histogram is one of the important de- two probability distributions: the transition distribution over
scriptors. For instance, it becomes possible to distinguishstates and the emission distribution over the output symbols.
objects moving on a certain path, making circular move- A random source described by such a model generates a se-
ments, etc. It is possible to find a vehicle backing up on quence of output symbols. Since the activity of the source
a wrong lane then driving correctly again, which may not is observed indirectly, through the sequence of output sym-
be detected using a global orientation. The aspect ratio is &ols, and the sequence of states is not directly observable,
good descriptor to distinguish between human objects andthe states are said to be hidden.
vehicles. The aspect ratio histogram can capture whether a We replace the trajectory information as the emitted ob-
person crouches and stands up during its lifetime. servable output of the above directed graph. The hidden
Using coordinates reveals spatial correlation betweenstates then capture the transitive properties of the consecu-

trajectories, however in some situations it is more important tive coordinates of the spatiotemporal trajectory. The state
to distinguish shape similarity of the trajectory independent sequence that maximizes the probability becomes the cor-
of the coordinates. The instantaneous speed and orientationesponding model for the given trajectory.
sequences are potential features that establish shape simi- A simple specification of ar-state {51, Sa, ..., Sk }
larity even if there is a spatial translation. Thus, we define continuous HMM with a Gaussian observation is given by:
two other sequential features; the orientation and speed se- ] o
quences (fig. 2). These sequences are a mapping from tra- 1. A set of prior probabilitiesr = {m;} wherer; =
jectory coordinates to time functior®2 — R. P(g1 = 5;)andl <i < K.

0 10 20 30 40
time

2. Aset of state transition probabilitié&s= {b;; }, where
2.2. Frame Based Features bij = P(q41 = Sjlge = S;) andl < i, j < K.

On the other hand, frame-wise features specify the charac- 3 \jean variance and weights of mixture models
teristics of objects existing within the same frame. These
features become more distinctive as the number of the visi-
ble objects in the frame increases.

The number of objects detected at the current frame isAbove, ¢; and O, are the state and observation at time
one obvious frame-wise feature. Despite its simplicity, this For each trajectoryl’, we fit an M-mixture HMM )\ =
feature may give important clues about the unusual events(w, B, i1, 3) that has left-to-right topology using the Baum-
such as unexpectedly high number of persons in a room ifWelch algorithm. We chose the left-to-right topology since
the room is usually empty, which may signify a meeting. it can efficiently describe continuous processes. We train a
The total size of the objects, which indicates the total oc- HMM model using the trajectory as the training data. As a
cupied area, is another feature of a frame, and it gives in-result, each trajectory is assigned to a separate model.
formation similar to the number of objects. An aggregated  The optimum number of states and mixtures depend on
location histogram shows where objects are concentratedthe complexity and duration of the trajectories. To provide
The dominant orientation is yet another frame feature. sufficient evidence to every Gaussian of every state in the

The histogram of the instantaneous orientations of the training stage, the lifetime of the trajectory should be much
visible objects at the current frame captures the distribu-larger than the number of mixtures times number of states
tion of the objects direction, which can be used to detect N > M x K. On the other hand, a state can be viewed as a
the changes of the flow of the traffic (e.g. wrong lane en- basic pattern of the trajectory, thus depending the trajectory

N(Oy; pj, 0;) wherep; andy; are the mean and co-
variance of the statg
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Figure 3: Usual events is detected using affinity matrices.

place and time”. We detect two types of events using the Featurs | [ Gommate
defined features depending the type of features: 1) object

domain events, 2) frame domain events. An object domain
event is obtained by clustering objects. Similarly, a frame

based event is derived from the frame features and it corre-
sponds to a particular time instance or duration.

In addition, we propose two methods to detect unusual
and usual events. An unusual event is associated with the
distinctness of the activity. For instance, a running persong,; = e~4/27° whered(i, j) is distance, and? is a
where everybody walks is interpreted as unusual as well asconstant scaler. Note that mattixe R™*" is a real semi-
awalking person where the rest run. A usual eventindicatespositive symmetric matrix, thud”™ = A.
the comnonality, e.g. a path that most people walks, etc. A |n case of the HMM parameter based features, the dis-
flow diagram of the detection process for usual and unusuakanced(i, j) is measured using a mutual fitness score of the
events is shown in figures 3 and 4. models and input features. We define the distance between

To detect the usual events, we find object clusters by an-two trajectories in terms of their HMM parameterizations as
alyzing the affinity matrices. For each feature, an affinity
matrix is computed using the pair-wise object similarities. (T, T = |L(T*\) + L(T"\)

Then, matrices are added and normalize{Dto 1] to ob- —L(T%\Y) — L(T* \%)] (1)

tain an aggregated matrix. We apply eigenvector decompo-

sition to find the optimal number of clusters. We use the which corresponds the cross-fitness of the trajectories to
decomposed matrix and then thresholded values to assigrach other’s models.

objects in the clusters. Here we impose identical weights,  The L(T%; \,), L(T*; ;) terms indicate the likelihood
which can be adapted to specific applications by adjustingof the trajectories to their own fitted model, i.e. we obtain
the contribution of features using priori information. the maximum likelihood response for the models. The cross

To determine the unusual events, we analyze each affinterms L(T%; \), L(T?; \,) reveal the likelihood of a tra-
ity matrix. Objects are ordered with respect to their con- jectory generated by the other trajectories model. In other
formity scores. These scores are multiplied by the weightswords, if two trajectories are identical, the cross terms will
to inject the priori information. Finally, the objects are re- have a maximum value, thus eq. 1 will be equal to zero. On
ordered with respect to the total conformity scores, and thethe other hand, if trajectories are different, their likelihood
objects that have low scores are identified as unusual eventsof being generated from each others model will be small,
The same analogy is valid for the frame domain events.  thus the distance will be high.

Why Spectral Clustering? 3.2. Detection of Usual Events

Note that, it is possible to compute pair-wise distances for First, the affinity matrices are decomposed using a certain

unequal duration trajectories, which are very common for "Umber of the largest eigenvectors.
object tracking applications, but it is not possible to map all

the trajectories into a uniform data space where the vectorEigenvector Decomposition
dimensionis constant. The ordinary clustering methods that . o .
require uniform feature size are not applicable. Thus, we The decomposition of a square matrix into eigenvalues and

developed the following spectral clustering based methods.eigJenVGCtorS is known as eige”"ecmf decompositiqn.
Although spectral clustering [5], [15], [12], [11] is ad-

.. . dressed before in the literature, to our knowledge no one has
3.1. Affinity Matrix established the relationship between the optimal clustering
For each feature, an affinity matrig is constructed. The  of the data distribution and the number of eigenvectors that
elementsy;; of this matrix are equal to the similarity of the  should be used for spanning. Here we show that the number
corresponding objectsand;j. The similarity is defined as  of eigenvectors is proportional to the number of clusters.



LetV = [v1 va .. v,,] be a matrix formed by the space using the; sincev; L v,. Thus, we deduct the
columns of the eigenvectors. L& be a diagonal matrix  following lemma:
diag[M1, .., \n]. Lets also assume eigenvalues ane > Cluster & Eigenvector Lemma: The number of largest
A2 > ...\,. Then the generalized eigenvalue problem is eigenvalues (in absolute value) to span subspace is one less

than the number of clusters.
(A=D)V = [Avy .. Avp] = [\ivi . Aave]D =VD (2) As opposed to using only the largest or first and second
. . . . largest eigenvectors (also the generalized second minimum
— -1
gg?rés;o‘nfdli)n‘g to. d?slgﬁiféizzx\r?aﬁeetgnghfezllg:nn(;/iﬁﬁ:)zO which is the ratio of the first and the second depending the
2 ‘definition of affinity), the correct number of eigenvectors

nal VT — VTV — I, which impliesA — VDV, ) g

Let trix P, b trix i bspade that i should be selected with respect to the target cluster num-
€l a matnx.f, be a matrix-in a subspa at1s ber. Using only one or two does fail for multiple clusters
spanned by the columns fsuch asb;, = [v1 va .. v, 0]

. . . narios.
where V is the orthogonal basis satisfies = VDV7. scenarios

Now. we define vectors.. as the rows of the truncated ma- The values of the thresholds should still be computed.
' B We obtained projections that gives us the maximum sep-

trix Py, as aration but we did not determine the degree of separation
p1 vi1 0 v O e i.e. maximum and minimum values of projected values on
P, . . : 3) the basis vectors. For convenience, we normalize the pro-

jections i.e. theows of current projection matrix(;) as

Pn Un1 0 Unk 0 - p’'p = 1 and then compute the correlatidjf V;. Correla-
tion will make rows that their projections are similar to get
values close to 1 (equal values will give exactly 1), and dis-
pz’j/\/Z? pz;- Then a correlation matrix is computed us- similar values to 0. By maximizing the separation (distance)
ing the normalized rows bg), = P, P!. For a givenp;, between the points in different clusters on an orthonormal
the value ofp;; indicates the degree of similarity between basis, we pushed for the orthogonality of points depending
the objecti and objectj. Values close to one correspond their clustersp;p; ~ 1 if they are in the same cluster, and
to a match whereas negative values and values close to zerp:P; ~ 0 if they are not.

suggest that objects are different. ledte a threshold that

transfers values of matri&, to the binary quantized values  Estimating the Number of Clusters - Ad Hoc Method

of an association matril/;, as

We normalize each row of matrixP, by p;;

After each eigenvalue computation of matelx we com-

1 ¢j>e pute a validity scorey; using the clustering results as
Wij = 0 ¢ <e )
(X k
i . 1
wheree ~ 0.5. The clustering is then becomes grouping the ag = § N E Dij (5)
objects that have association values equal towye= 1. ¢ T Cijez.

To explain why this works, remember that eigenvec-
tors are the solution of the classical extremal problem

T Av constrained bw’v = 1. That is, find the \ . .
Xy 2V wv for the better fits. Thus, by evaluating the local maxima of

linear combination of variables having the Iargestvariance,thi re we determine th rrect cluster number automat
with the restriction that the sum of the squared weights is . S Score we dete € the correct cluster number automat-

1. Minimizing the usual Lagrangian expressiofi Av — ically. Thus, we answer the natural question of clustering;

A(vTv — 1) implies that(I — A)v = AIv. Thus,v is the "what should be the total cluster number?”
eigenvector with the largest eigenvalue ' As a summary, the clustering for a given maximum clus-

As a result, when we project the affinity matrix columns ter numberc® includes
on the eigenvectov, with the largest eigenvalue and span 1. computed, approximate eigenvectors using Ritz val-
K1, the distribution of thex;; will have the maximum vari- ues)y, ~ 0y, find eigenvectors,, for k = 1, .., k*,
ance therefore the maximum separation. Keep in mind that
a threshold operation will perform best if the separation is 2. FindP, = V, VI andQy, fork = 1,.., k*,
high. To this end, if the distribution of values have only two i
distinct classes then a balanced threshold passing through 3: Petermine clusters and calculatg,
the center will divide the points into two separate clusters.
With the same reasoning, the eigenveatgwith the sec-
ond largest eigenvalue, we will obtain the basis vector that The maximum cluster numbér does not affect the deter-
gives the best separation after normalizing the projectedmination of the fittest cluster; it is only an upper limit.

whereZ. is set of objects included in the clustetN. num-
ber of objects inZ.. The validity score gets higher values

4. Computey’ = da/dk and find local maxima.



similarity
o
& e

o

Compute Conformity Score
Affinity Matrix for Each Object

Feature
1

image y-axis

Reorder

- 0 2
image x-axis 0 object no

(a)

Feature Compute Conformity Score
N Affinity Matrix for Each Object Unusual
Events 12
/

Figure 4: Unusual events is found using conformity scores. /\

4 6 8
cluster number image x-axis
(c) (d)

Figure 5: (a) Set of trajectories, (b) corresponding affinity
matrix, (c) validity score, (d)result of automatic clustering.

validity

o
>
image y-axis

Comparison with K-means

A question arise that why we preferred the eigenvector clus-
tering to the ordinary k-means?

Most importantly, a ‘mean’ or a ‘center’ vector cannot
be defined for trajectories that have different durations. We
only have pair-wise distances. In eigenvector decompo-
sition, mutual inter-feature distance as opposed to centerFeature Selection and Adaptive Weighting

distance is used. Itis also possible to select most discriminating features be-
Ordinary k-means may oscillate between cluster centers fore the clustering stage. However feature selection requires
and different initial values may cause completely dissimilar priori knowledge about the application and understanding
clusters. Besides, k-means can stuck to local optima. Theref the nature of events. Thus, we preferred to let the clus-
fore, k-means based cluster number estimation is not alwaysering module to determine the prominent features instead
accurate. Furthermore, the computational complexity of k- of 5 preselection of such features. Moreover, we will show
means increases with the larger sizes of the feature vectorsat truncation of the eigenbasis amplifies unevenness in the
Although the eigenvector decompositior?$2 n®+3 kn?), distribution of features by causing features of high affinity
itis not exponentially proportional to the size of feature vec- g move towards each other and other to move apart.
tor s. (Note that we do not claim the eigenvector computa-  Qyr simulations show that the feature variance is an ef-
tion cannot be done more efficiently that(n®), e.g. for  fective way to select the above feature weights The fea-
m eigenvectors, the complexity reduces@gmn?)). In ture variance is calculated from the corresponding affinity
case thes ~ n, k-means algorithm, which has complexity matrix. In case the feature supplies distinctive information

of O((klogn)* + Jk?n) becomes much more demanding  the variance will have a higher value. The opposite is also
than eigenvector decompositiofiis the required iterations  {rye, Thus, we assign the fusion weights as

necessary for convergence). )
wp =D (ai = py)? (6)
iog

] o ] ) _ wherea;; is an element of the affinity matrid; for the
Using the affinity matrices, conformity scores of the objects featuref. This enables emphasizing important features.
are computed. The conformity score of an objeébr a

given featuref is the sum of the corresponding row (or col- 4. Experiments

umn) of the affinity matrix that belong that featuse(i) =

> . ain. To fuse the responses of different features, we We conducted experiments using both synthetic and real
propose a simple weighted sum approach. We obtain a to-data. For HMM representation of the coordinate, speed, and
tal conformity score for an object aii) = > wy3y(i), orientation. we used the same number of models and num-
wherew; = 1 for equivalently important features. Then, ber of states. To make the simulations more challenging we
we order each object with respect to its total conformity contaminated the trajectories with noise.

score. The object that has the minimum score corresponds Fig. 8 shows three different simulated scenarios for de-

to most different, thus most unusual event. tection of unusual events: 1) an object moving in opposite

3.3. Detection of Unusual Events



direction to the rest, 2) a waiting object where other objects
moves, 3) a fast moving object. All of these scenarios may
corresponds real unusual suspicious events, for instance the
first scenario corresponds to a wrong-lane entry, the sec-
ond scenario is a browsing or stalking activity, and the third
scenario may be a running person in an airport where ev-
erybody walk. The trajectories for each case are depicted
in Fig. 8-a. The second column (Fig. 8-b) shows the fused
affinity matrices using the weights;. We compute the
conformity scoregi(:) from the affinity matrices, which are
given Fig. 8-d. As visible, the conformity score is found the
most unusual event accurately at each time (Fig. 8-e).

We can also find a list of most unusual events using the
conformity scores as shown in Fig. 7 where the most un-
usual events were 1) a person moving across an highway,
2) a car backing up on the shoulder, 3) a person getting out
of the car and leaving the scene, and a car slowing down in
the shoulder. We can extent this list. Note that, we didn’t
adapt the weights or define models, the algorithm found the
events automatically.

We simulated usual event detection using the trajectories
given in fig. 5-a. In this set, there are 5 distinct pathways
exist. Fig. 5-b shows the aggregated affinity matrix. We
determined the optimal number of clusters using the validity
scorex as shown in fig. 5-c. The maximum validity score is
obtained forn = 5 which is same as the ground truth. The
clustered trajectories are given in fig. 5-d. As visible, the
proposed method successfully found the correct clusters.

We also used a real traffic setup for the detection of usual
events, which in this case becomes the pathways as depicted
. in fig. 6-a,b. In case of a PETS-2003 soccer video, we used
I frame features. We observed that the proposed algorithm

(e) automatically detected the usual events as the team on the
attack. In fig. 6-c,d two frames corresponding to the two
Figure 6: Automatic usual event detection results: (a-b) different usual events are shown.
clustered vehicle trajectories indicate different pathways. Since our features are more expressive, we are able to
(c) redteam is on attack in PETS-2003 benchmark sequencejetect events that cannot be detected using the features that
(frames pointed by leftmost black arrow), (d) white team is have been reported so far. Our technique thus offers an
on attack (leftmost blue), (e) orientation histogram feature. overall substantial improvement over existing techniques in
both computational simplicity and enhanced functionality.
Our experiments (presented and others didn't fit due to the
page limitation) prove the proposed methods are effective
and stable.

5. Discussion

We proposed a new set of more expressive features that en-
able detection of events that could not be detected using
(b) conventional descriptors. We developed an unsupervised
clustering framework based on the above and successfully
Figure 7: Automatic unusual event detection results: (a) applied it to event detection. This framework is not ad-
frame shows the most unusual object who is crossing overversely affected by increases in feature dimensionality.

the highway, (b) other 124 trajectories and unusual objects. e achieve clustering of variable length trajectories by
No priori information is used.
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Figure 8: Unusual event detection: (a) input trajectories, (b) affinity matrices, (c) conformity scores (lowest score shows the
most unusual), (d) detected most unusual trajectory (red), and (e) results in spatiotemporal space. First row simulates the

wrong lane entry, second row simulates waiting, third row simulates running.
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