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Abstract

We present an approach that incorporates appearance-adaptive models in a particle filter to realize

robust visual tracking and recognition algorithms. Tracking needs modeling inter-frame motion and

appearance changes whereas recognition needs modeling appearance changes between frames and gallery

images. In conventional tracking algorithms, the appearance model is either fixed or rapidly changing,

and the motion model is simply a random walk with fixed noise variance. Also, the number of particles is

typically fixed. All these factors make the visual tracker unstable. To stabilize the tracker, we propose the

following modifications: an observation model arising froman adaptive appearance model, an adaptive

velocity motion model with adaptive noise variance, and an adaptive number of particles. The adaptive-

velocity model is derived using a first-order linear predictor based on the appearance difference between

the incoming observation and the previous particle configuration. Occlusion analysis is implemented

using robust statistics. Experimental results on trackingvisual objects in long outdoor and indoor video

sequences demonstrate the effectiveness and robustness ofour tracking algorithm. We then perform

simultaneous tracking and recognition by embedding them ina particle filter. For recognition purposes,

we model the appearance changes between frames and gallery images by constructing the intra- and

extra-personal spaces. Accurate recognition is achieved when confronted by pose and view variations.
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I. I NTRODUCTION

Particle filtering [1] is an inference technique for estimating the unknown motion state,θt, from

a noisy collection of observations,Y1:t = {Y1, ..., Yt} arriving in a sequential fashion. A state

space model is often employed to accommodate such a time series. Two important components

of this approach are state transition and observation models whose most general forms can be

defined as follows:

State transition model:θt = Ft(θt−1, Ut), (1)

Observation model:Yt = Gt(θt, Vt), (2)

whereUt is the system noise,Ft(., .) characterizes the kinematics,Vt is the observation noise, and

Gt(., .) models the observer. The particle filter approximates the posterior distributionp(θt|Y1:t)

by a set of weighted particles{θ(j)
t , w

(j)
t }J

j=1. Then, the state estimatêθt can either be the

minimum mean square error (MMSE) estimate,

θ̂t = θmmse
t = E[θt|Y1:t] ≈ J−1

J
∑

j=1

w
(j)
t θ

(j)
t , (3)

or the maximum a posteriori (MAP) estimate,

θ̂t = θmap
t = arg max

θt

p(θt|Y1:t) ≈ arg max
θt

w
(j)
t , (4)

or other forms based onp(θt|Y1:t).

The state transition model characterizes the motion changebetween frames. In a visual tracking

problem, it is ideal to have an exact motion model governing the kinematics of the object.

In practice, however, approximate models are used. There are two types of approximations

commonly found in the literature. (i) One is to learn a motionmodel directly from a training

video [2], [3]. However such a model may overfit the training data and may not necessarily

succeed when presented with testing videos containing objects arbitrarily moving at different

times and places. Also one cannot always rely on the availability of training data. (ii) Secondly,

a fixed constant-velocity model with fixed noise variance is fitted as in [4], [5], [6], [7].

θt = θt−1 + Ut, (5)
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whereUt has a fixed noise variance of the formUt = R0∗U0 with R0 a fixed constant measuring

the extent of noise andU0 a ‘standardized’ random variable/vector1. If R0 is small, it is very

hard to model rapid movements; ifR0 is large, it is computationally inefficient since many more

particles are needed to accommodate the large noise variance. All these factors make use of such

a model ineffective. In this paper, we overcome this by introducing an adaptive-velocity model.

While contour is the visual cue used in many tracking algorithms [2], another class of tracking

approaches [8], [9], [7] exploit an appearance modelAt. In its simplest form, we have the

following observation equation2,

Zt = T {Yt; θt} = At + Vt, (6)

whereZt is the image patch of interest in the video frameYt, parameterized byθt. In [8], a fixed

template,At = A0, is matched with observations to minimize a cost function inthe form of sum

of squared distance (SSD). This is equivalent to assuming that the noiseVt is a normal random

vector with zero mean and a diagonal (isotropic) covariancematrix. At the other extreme, one

could use a rapidly changing model [9], say,At = Ẑt−1, i.e., the ‘best’ patch of interest in

the previous frame. However, a fixed template cannot handle appearance changes in the video,

while a rapidly changing model is susceptible to drift. Thus, it is necessary to have a model

which is a compromise between these two cases. In [10], Jepson et. al. proposed an online

appearance model (OAM) for a robust visual tracker, which isa mixture of three components.

Two EM algorithms are used, one for updating the appearance model and the other for deriving

the tracking parameters.

Our approach to visual tracking is to make both observation and state transition models

adaptive in the framework of a particle filter, with provisions for handling occlusion. The main

features of our tracking approach are as follows:

• Appearance-based. The only visual cue used in our tracker isthe 2-D appearance; i.e., we

employ only image intensities, though in general features derived from image intensities,

such as the phase information of the filter responses [10] or the Gabor feature graph

1Consider the scalar case for example. IfUt is distributed asN(0, σ2), we can writeUt = σU0 whereU0 is standard normal

N(0, 1). This also applies to multivariate cases.

2For the sake of simplicity, we denote:Zt = T {Yt; θt}, Z
(j)
t = T {Yt; θ

(j)
t }, Ẑt = T {Yt; θ̂t}. Also, we can always vectorize

the 2-D image by a lexicographical scanning of all pixels and denote the number of pixels byd.
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presentation [11], are also applicable. No prior object models are invoked. In addition,

we only use gray scale images.

• Adaptive observation model. We adopt an appearance-based approach. The original online

appearance model (OAM) is modified and then embedded in our particle filter. Therefore,

the observation model is adaptive as the appearanceAt involved in Eq. (6) is adaptive.

• Adaptive state transition model. Instead of using a fixed model, we use an adaptive-velocity

model, where the adaptive motion velocity is predicted using a first-order linear approxima-

tion based on the appearance difference between the incoming observation and the previous

particle configuration. We also use an adaptive noise component, i.e,Ut = Rt ∗ U0, whose

magnitudeRt is a function of the prediction error. It is natural to vary the number of

particles based on the degree of uncertaintyRt in the noise component.

• Handling occlusion. Occlusion is handled using robust statistics [12], [8], [13]. We robustify

the likelihood measurement and the adaptive velocity estimate by downweighting the ‘out-

lier’ pixels. If occlusion is declared, we stop updating theappearance model and estimating

the motion velocity.

Video-based recognition needs to handle uncertainties in both tracking and recognition. While

conventional methods [14] resolve these uncertainties separately, i.e. tracking followed by recog-

nition, we have proposed in [7] a framework to model both uncertainties in a unified way

to realize simultaneous tracking and recognition. As evidenced by the empirical results (on

a relatively modest databases) in [7], this algorithm improves its recognition rate over the

conventional ones without sacrificing accuracy in tracking.

We focus on face recognition in this paper. Though the time series formulation allows very

general models, our earlier efforts invoked rather simple ones, which may yield unsatisfactory

results in both tracking and recognition when confronted bysevere pose and illumination vari-

ations. We improve our approach in the following three aspects: (i) Modeling the inter-frame

motion and appearance changes within the video sequence; (ii) Modeling the appearance changes

between the video frames and gallery images by constructingintra- and extra-personal spaces

which can be treated as a ‘generalized’ version of discriminative analysis [15]; and (iii) Utilizing

the fact that the gallery images are in frontal views. By embedding these in a particle filter, we

are able to achieve a stabilized tracker and an accurate recognizer to handle pose and illumination

variations.
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This paper is organized as follows. We briefly review the related literature on visual tracking

and particle filters in Section II. We examine the details of an adaptive observation model in

Section III, with a special focus on the adaptive appearancemodel, and of an adaptive state

transition model in Section IV with a special focus on how to calculate the motion velocity.

Handling occlusion is discussed in Section V, and experimental results on tracking vehicles and

human faces in Section VI. Simultaneous tracking and recognition is discussed in Section VII,

with conclusions presented in Section VIII.

II. RELATED WORK ON VISUAL TRACKING AND PARTICLE FILTERS

A. Visual tracking

Roughly speaking, previous work on visual tracking can be divided into two groups: deter-

ministic tracking and stochastic tracking. Our approach combines the merits of both stochastic

and deterministic tracking approaches in a unified framework using a particle filter. We give

below a brief review of both approaches.

Deterministic approaches usually reduce to an optimization problem, e.g., minimizing an

appropriate cost function. The definition of the cost function is a key issue. A common choice

in the literature is the SSD used in many optical flow approaches [8].3 A gradient descent

algorithm is most commonly used to find the minimum. Very often, only a local minimum can

be reached. In [8], the cost function is defined as the SSD between the observation and a fixed

template, and the motion is parameterized as affine. Hence the task is to find the affine parameter

minimizing the cost function. Using a Taylor series expansion and keeping only the first-order

terms, a linear prediction equation is obtained. It has beenshown that for the affine case, the

system matrix can be computed efficiently since a fixed template is used. Mean shift [16] is an

alternative deterministic approach to visual tracking, where the cost function is derived from the

color histogram.

Stochastic tracking approaches often reduce to an estimation problem, e.g., estimating the state

for a time series state space model. Early works [17], [18] used the Kalman filter or its variants

[19] to provide solutions. However, this restricts the typeof model that can be used. Recently

3We note that using SSD is equivalent to using a model where the noise obeys an iid Gaussian distribution; therefore this

case can also be viewed as stochastic tracking.
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sequential Monte Carlo (SMC) algorithms [1], [20], [21], [22], which can model nonlinear/non-

Gaussian cases, have gained prevalence in the tracking literature due in part to the CONDENSATION

algorithm [2]. Stochastic tracking improves robustness over its deterministic counterpart by its

capability for escaping local minimum since the search directions are for the most part random

even though they are governed by a deterministic state transition model. Toyama and Blake

[23] proposed a probabilistic paradigm for tracking with the following properties: Exemplars

are learned from the raw training data and embedded in a mixture density; The kinematics is

also learned; The likelihood measurement is constructed ona metric space. Other approaches

are also discussed in Section II-B. However, as far as the computational load is concerned,

stochastic algorithms in general are more intense. Note that the stochastic approaches often lead

to optimization problems too.

B. Particle Filter

General algorithm:Given the state transition model in (1) characterized by thestate transition

probability p(θt|θt−1) and the observation model in (2) characterized by the likelihood function

p(Yt|θt), the problem is reduced to computing the posterior probability p(θt|Y1:t) The nonlinear-

ity/nonnormality in (1) and (2) result in Kalman filter [19] being ineffective. The particle filter

is a means to approximate the posterior distributionp(θt|Y1:t) by a set of weighted particles

St = {θ(j)
t , w

(j)
t }J

j=1 with
∑J

j=1 w
(j)
t = 1. It can be shown [20] thatSt is properly weightedwith

respect top(θt|Y1:t) in the sense that, for every bounded functionh(.),

lim
J→∞

J
∑

j=1

w
(j)
t h(θ

(j)
t ) = Ep[h(θt)]. (7)

Given St−1 = {θ(j)
t−1, w

(j)
t−1}J

j=1 which is properly weighted with respect top(θt−1|Y1:t−1), we

first resampleSt−1 to reach a new set of samples with equal weights{θ′(j)
t−1, 1}J

j=1. We then draw

samples{U (j)
t }J

j=1 for Ut and propagateθ
′(j)
t−1 to θ

′(j)
t by Eq. (1). The new weight is updated as

wt ∝ p(Yt|θt) (8)

The complete algorithm is summarized in Fig. 1.

Variations of Particle Filters:Sequential Importance Sampling (SIS) [20], [24] draws particles

from aproposal distributiong(θt|θt−1, Y1:t) and then for each particle a proper weight is assigned

as follows:

wt ∝ p(Yt|θt)p(θt|θt−1)/g(θt|θt−1, Y1:t). (9)
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Initialize a sample setS0 = {θ
(j)
0 , 1)}J

j=1 according to prior distributionp(θ0).

For t = 1, 2, . . .

For j = 1, 2, . . . , J

Resample St−1 = {θ
(j)
t−1, w

(j)
t−1} to obtain a new sample(θ

′(j)
t−1, 1).

Predict the sample by drawingU (j)
t for Ut and computingθ(j)

t = Ft(θ
′(j)
t−1, U

(j)
t ).

Compute the transformed imageZ(j)
t .

Update the weight usingw(j)
t = p(Yt|θ

(j)
t ) = p(Z

(j)
t |θ

(j)
t ).

End

Normalize the weight usingw(j)
t = w

(j)
t /

∑J

j=1
w

(j)
t .

End

Fig. 1. The general particle filter algorithm.

Selection of the proposal distributiong(θt|θt−1, Y1:t) is usually dependent on the application.

For example, in the ICONDENSATION algorithm [25] which fuses low-level and high-level visual

cues in the conventional CONDENSATION algorithm [2], the proposal distribution, a fixed Gaussian

distribution for low-level color cue, is used to predict theparticle configurations, then the posterior

distribution of the high-level shape cue is approximated using SIS. It is interesting to note that

two different cues can be even combined together into one state vector to yield a robust tracker,

using the co-inference algorithm [6] and the approach proposed in [26]. We also use a prediction

scheme but our prediction is based on the same visual cue i.e.the appearance in the image, and it

is directly used in the state transition model rather than used as a proposal distribution. Additional

visual cues are not used.

III. A DAPTIVE OBSERVATION MODEL

The adaptive observation model arises from the adaptive appearance modelAt. We use a

modified version of OAM as developed in [10]. The differencesbetween our appearance model

and the original OAM are highlighted below.

A. Mixture appearance model

The original OAM assumes that the observations are explained by different causes, thereby

indicating the use of a mixture density of components. In theoriginal OAM presented in [10],

three components are used, namely theW -component characterizing the two-frame variations,
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the S-component depicting the stable structure within all past observations (though it is slowly-

varying), and theL-component accounting for outliers such as occluded pixels.

We modify the OAM to accommodate our appearance analysis in the following aspects. (i)

We directly use the image intensities while they use phase information derived from the image

intensities. Direct use of the image intensities is computationally more efficient than using the

phase information that requires filtering and visually moreinterpretable. (ii) As an option, in

order to further stabilize the tracker one could use anF -component which is a fixed template

that one is expecting to observe most often. For example, in face tracking this could be just

the facial image as seen from a frontal view. In the sequel, wederive the equations as if there

is anF -component. However, the effect of this component can be ignored by setting its initial

mixing probability to zero. (iii) We embed the appearance model in a particle filter to perform

tracking while they use the EM algorithm. (iv) In our implementation, we do not incorporate

the L-component because we model the occlusion in a different manner (using robust statistics)

as discussed in Sec. V.

We now describe the mixture appearance model. The appearance model at timet, At =

{Wt, St, Ft}, is a time-varying one that models the appearances present in all observations up to

time t−1. It obeys a mixture of Gaussians, withWt, St, Ft as mixture centers{µi,t; i = w, s, f}
and their corresponding variances{σ2

i,t; i = w, s, f} and mixing probabilities{mi,t; i = w, s, f}.

Notice that{mi,t, µi,t, σ
2
i,t; i = w, s, f} are ‘images’ consisting ofd pixels that are assumed to

be independent of each other.

In summary, the observation likelihood is written as

p(Yt|θt) = p(Zt|θt) =
d

∏

j=1

{
∑

i=w,s,f

mi,t(j)N(Zt(j); µi,t(j), σ
2
i,t(j))}, (10)

whereN(x; µ, σ2) is a normal density

N(x; µ, σ2) = (2πσ2)−1/2 exp{−ρ(
x − µ

σ
)}, ρ(x) =

1

2
x2. (11)

B. Model update

To keep our paper self-contained, we show how to update the current appearance modelAt to

At+1 after Ẑt becomes available, i.e., we want to compute the new mixing probabilities, mixture

centers, and variances for timet + 1, {mi,t+1, µi,t+1, σ
2
i,t+1; i = w, s, f}.
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It is assumed that the past observations are exponentially ‘forgotten’ with respect to their

contributions to the current appearance model. Denote the exponential envelop byEt(k) =

α exp(−τ−1(t−k)) for k ≤ t, whereτ = nh/ log 2, nh is the half-life of the envelope in frames,

andα = 1 − exp(−τ−1) to guarantee that the area under the envelope is 1. We just sketch the

updating equations as follows and refer the interested readers to [10] for technical details and

justifications.

The EM algorithm [27] is invoked. Since we assume that the pixels are independent of each

other, we can deal with each pixel separately. The followingcomputation is valid forj =

1, 2, . . . , d whered is the number of pixels in the appearance model.

Firstly, the posterior responsibility probabilities are computed as

oi,t(j) ∝ mi,t(j)N(Ẑt(j); µi,t(j), σ
2
i,t(j)); i = w, s, f, &

∑

i=w,s,f

oi,t(j) = 1. (12)

Then, the mixing probabilities are updated as

mi,t+1(j) = α oi,t(j) + (1 − α) mi,t(j); i = w, s, f, (13)

and the first- and second-moment images{Mp,t+1; p = 1, 2} are evaluated as

Mp,t+1(j) = α Ẑp
t (j)os,t(j) + (1 − α) Mp,t(j); p = 1, 2. (14)

Finally, the mixture centers and the variances are updated as:

St+1(j) = µs,t+1(j) =
M1,t+1(j)

ms,t+1(j)
, σ2

s,t+1(j) =
M2,t+1(j)

ms,t+1(j)
− µ2

s,t+1(j). (15)

Wt+1(j) = µw,t+1(j) = Ẑt(j), σ2
w,t+1(j) = σ2

w,1(j), (16)

Ft+1(j) = µf,t+1(j) = F1(j), σ2
f,t+1(j) = σ2

f,1(j). (17)

C. Model initialization

To initialize A1, we setW1 = S1 = F1 = T0 (with T0 supplied by a detection algorithm or

manually),{mi,1, σ
2
i,1; i = w, s, f}, andM1,1 = ms,1T0 andM2,1 = ms,1σ

2
s,1 + T 2

0 .
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IV. A DAPTIVE STATE TRANSITION MODEL

The state transition model we use incoporates a term for modeling adaptive velocity. The adap-

tive velocity is calculated using a first-order linear prediction method based on the appearance

difference between two successive frames. The previous particle configuration is incorporated in

the prediction scheme.

Construction of the particle configuration involves the costly computation of image warping

(in the experiments reported here, it usually accounts for about half of the computations). In a

conventional particle filtering algorithm, the particle configuration is used only to update the

weight, i.e., computing weight for each particle by comparing the warped image with the

online appearance model using the observation equation. But, our approach in addition uses

the particle configuration in the state transition equation. In some sense, we ‘maximally’ utilize

the information contained in the particles (without wasting the costly computation of image

warping) since we use it in both state and observation models.

In [28], random samples are guided by deterministic search.Momentum for each particle is

computed as the sum of absolute difference between two frames. If the momentum is below a

threshold, a deterministic search is first performed using agradient descent method and a small

number of offsprings is then generated by stochastic diffusion; otherwise, stochastic diffusion

is performed to generate a large number of offsprings. The stochastic diffusion is based on

a second-order autoregressive process. But, the gradient descent method does not utilize the

previous particle configuration in its entirety. Also, the generated particle configuration could

severely deviate from the second-order autoregressive model, which clearly implies the need for

an adaptive model.

A. Adaptive velocity

With the availability of the sample setΘt−1 = {θ(j)
t−1}J

j=1 and the image patches of interest

Zt−1 = {Z(j)
t−1}J

j=1, for a new observationYt, we can predict the shift in the motion vector (or

adaptive velocity)νt = θt − θ̂t−1 using a first-order linear approximation [8], [29], [30], [31],

which essentially comes from the constant brightness constraint, i.e., there exists aθt such that

T {Yt; θt} ' Ẑt−1. (18)
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ApproximatingT {Yt; θt} using a first-order Taylor series expansion aroundθ̃t (we setθ̃t =

θ̂t−1) yields

T {Yt; θt} ' T {Yt; θ̃t} + Ct(θt − θ̃t) = T {Yt; θ̃t} + Ctνt, (19)

whereCt is the Jacobian matrix.

Combining (18) and (19) gives

Ẑt−1 ' T {Yt; θ̃t} + Ctνt, (20)

i.e.,

νt = θt − θ̃t ' −Bt(T {Yt; θ̃t} − Ẑt−1), (21)

whereBt is the pseudo-inverse of theCt matrix, which can be efficiently estimated from the

available dataΘt−1 andZt−1.

Specifically, to estimateBt we stack into matrices the differences in motion vectors andimage

patches, usinĝθt−1 and Ẑt−1 as pivotal points:

Θδ
t−1 = [θ

(1)
t−1 − θ̂t−1, . . . , θ

(J)
t−1 − θ̂t−1], (22)

Zδ
t−1 = [Z

(1)
t−1 − Ẑt−1, . . . , Z

(J)
t−1 − Ẑt−1]. (23)

The least square (LS) solution forBt is

Bt = (Θδ
t−1Zδ T

t−1 )(Zδ
t−1Zδ T

t−1 )−1, (24)

where(.)T means matrix transposition. However, it turns out that the matrix Zδ
t−1Zδ T

t−1 is very

often rank-deficient due to the high dimensionality of the data (unless the number of the particles

at least exceeds the data dimension). To overcome this, we use the singular value decomposition

(SVD).

Zδ
t−1 = USV T (25)

It can be easily shown that

Bt = Θδ
t−1V S−1UT. (26)

To gain some computational efficiency, we can further approximate

Bt = Θδ
t−1VqS

−1
q UTq , (27)
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by retaining the topq components. Notice that if only a fixed template is used [29],theB matrix

is fixed and pre-computable. But, in our case, the appearance is changing so that we have to

compute theBt matrix in each time step.

In practice, one may run several iterations tillZ̃t = T {Yt; θ̃t + νt} stabilizes, i.e., the errorεt

defined below is small enough.

εt = φ(Z̃t, At) =
2

d

d
∑

j=1

{
∑

i=w,s,f

mi,t(j)ρ(
Z̃t(j) − µi,t(j)

σi,t(j)
)}. (28)

In (28), εt measures the distance betweenT {Yt; θ̃t + νt} and the updated appearance modelAt.

The iterations proceed as follows: We initially setθ̃1
t = θ̂t−1. For the first iteration, we compute

ν1
t as usual. For thekth iteration, we use the predicted̃θk

t = θ̃k−1
t + νk−1

t as a pivotal point for

the Taylor expansion in (19) and the rest of the calculation then follows. It is rather beneficial to

run several iterations especially when the object moves very fast in two successive frames since

θ̂t−1 might cover the target inYt in a small portion. After one iteration, the computedνt might

be not accurate, but indicates a good minimization direction. Using several iterations helps to

find νt (compared tôθt−1) more accurately.

We use the following adaptive state transition model

θt = θ̂t−1 + νt + Ut, (29)

whereνt is the predicted shift in the motion vector. The choice ofUt is discussed below. One

should note that we are not using (29) as a proposal function to draw particles, which requires

using (9) to compute the particle weight. Instead we directly use it as the state transition model

and hence use (8) to compute the particle weight. Our model can be easily interpreted as a

time-varying state model.

It is interesting to note that the approach proposed in [26] also uses motion cues as well as

color parameter adaptation. Our approach is different from[26] in that: (i) We use the motion

cue in the state transition model while they use it as part of observations; (ii) We only use the

gray images without using the color cue which is used in [26];and (iii) We use an adaptive

appearance models which is updated by the EM algorithm whilethey use an adaptive color

model which is updated by a stochastic version of the EM algorithm.
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B. Adaptive noise

The value ofεt determines the quality of prediction. Therefore, ifεt is small, which implies

a good prediction, we only need noise with small variance to absorb the residual motion; if

εt is large, which implies a poor prediction, we then need noisewith large variance to cover

potentially large jumps in the motion state.

To this end, we useUt of the formUt = Rt ∗U0, whereRt is a function ofεt. Sinceεt defined

in (28) is a ‘variance’-type measure, we use

Rt = max(min(R0

√
εt, Rmax), Rmin), (30)

whereRmin is the lower bound to maintain a reasonable sample coverage and Rmax is the upper

bound to constrain the computational load.

C. Adaptive number of particles

If the noise varianceRt is large, we need more particles, while conversely, fewer particles are

needed for noise with small varianceRt. Based on the principle of asymptotic relative efficiency

(ARE) [32], we should adjust the particle numberJt in a similar fashion, i.e.,

Jt = J0Rt/R0. (31)

Fox [33] also presents an approach to improve the efficiency of particle filters by adapting the

particle numbers on-the-fly. His approach is to divide the state space into bins and approximate

the posterior distribution by a multinomial distribution.A small number of particles is used if

the density is focused on a small part of the state space and a large number of particles if the

uncertainty in the state space is high. In this way, the errorbetween the empirical distribution

and the true distribution (approximated as a multinomial inhis analysis) measured by Kullback-

Leilber distance is bounded. However, in his approach, since the state space (only 2D) is

exhaustively divided, the number of particles is at least several thousand, while our approach

uses at most a few hundred. Our attempt is not to explore the state space (6-D affine space)

exhaustively, but only the regions that have high potentialfor the object to be present.

D. Comparison between the adaptive velocity model and the zerovelocity model

We demonstrate the necessity of the adaptive velocity modelby comparing it with the zero

velocity model. Fig. 2 shows the particle configurations created from the adaptive velocity model
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(with Jt < J0 andRt < R0 computed as above) and the zero velocity model (withJt = J0 and

Rt = R0). Clearly, the adaptive-velocity model generates particles very efficiently, i.e, they are

tightly centered around the object of interest so that we caneasily track the object at timet;

while the zero-velocity model generates more particles widely spread to explore larger regions,

leading to unsuccessful tracking as widespread particles often lead to a local minimum.

Tracking result att − 1 Particle configuration att Tracking result att

Fig. 2. Particle configurations from (top row) the adaptive velocity modeland (bottom row) the zero-velocity model.

V. OCCLUSION HANDLING

Occlusion is usually handled in two ways. One way is to use joint probabilistic data associative

filter (JPDAF) [34], [35]; and the other one is to use robust statistics [12]. We use robust statistics

here.

A. Robust statistics

We assume that occlusion produces large image differences which can be treated as ‘out-

liers’. Outlier pixels cannot be explained by the underlying process and their influences on the

estimation process should be reduced. Robust statistics provide such mechanisms.

We use thêρ function defined as follows:

ρ̂(x) =











1
2
x2 if |x| ≤ c

cx − 1
2
c2 if |x| > c

, (32)
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wherex is normalized to have unit variance and the constantc controls the outlier rate. In our

experiment, we takec = 1.435 based on experimental experience. If|x| > c is satisfied, we

declare the corresponding pixel an outlier.

B. Robust likelihood measure and adaptive velocity estimate

The likelihood measure defined in Eq. (10) involves a multi-dimensional normal density. Since

we assume that each pixel is independent, we consider the one-dimensional normal density. To

make the likelihood measure robust, we replace the one-dimensional normal densityN(x; µ, σ2)

by

N̂(x; µ, σ2) = (2πσ2)−1/2 exp(−ρ̂(
x − µ

σ
)). (33)

Note that this is not a density function any more, but since weare dealing with discrete

approximation in the particle filter, normalization makes it a probability mass function.

Existence of outlier pixels severely violates the constantbrightness constraint and hence

affects our estimate of the adaptive velocity. To downweight the influence of the outlier pixels

in estimating the adaptive velocity, we introduce ad × d diagonal matrixLt with its ith

diagonal element beingLt(i) = η(xi) wherexi is the pixel intensity of the difference image

(T {Yt; θ̃t} − Ẑt−1) normalized by the variance of the OAM stable component and

η(x) =
1

x

dρ̂(x)

dx
=











1 if |x| ≤ c

c/|x| if |x| > c
, (34)

Eq. (21) becomes

νt ' −BtLt(T {Yt; θ̂t−1} − Ẑt−1). (35)

This is similar in principle to the weighted least square algorithm.

C. Occlusion declaration

If the number of the outlier pixels in̂Zt (compared with the OAM), saydout, exceeds a certain

threshold, i.e.,dout > λd where0 < λ < 1 (we takeλ = 0.15), we declare occlusion. Since

the OAM has more than one component, we count the number of outlier pixels with respect to

every component and take the maximum.

If occlusion is declared, we stop updating the appearance model and estimating the motion

velocity. Instead, we (i) keep the current appearance model, i.e., At+1 = At and (ii) set the
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Initialize a sample setS0 = {θ
(j)
0 , 1/J0)}

J0

j=1 according to prior distributionp(θ0).

Initialize the appearance modelA1.

Set OCCFLAG = 0 to indicate no occlusion.

For t = 1, 2, . . .

If (OCCFLAG == 0)

Calculate the state estimatêθt−1 by Eq. (3) or (4), the adaptive velocityνt by Eq. (21), the noise variance

Rt by Eq. (30), and the particle numberJt by Eq. (31).

Else

Rt = Rmax, Jt = Jmax, νt = 0.

End

For j = 1, 2, . . . , Jt

Draw the sampleU (j)
t for Ut with varianceRt.

Construct the sampleθ(j)
t = θ̂t−1 + νt + U

(j)
t by Eq. (29).

Compute the transformed imageZ(j)
t .

Update the weight usingw(j)
t = p(Yt|θ

(j)
t ) = p(Z

(j)
t |θ

(j)
t ).

End

Normalize the weight usingw(j)
t = w

(j)
t /

∑J

j=1
w

(j)
t .

Set OCCFLAG according to the number of the outlier pixels in̂Zt.

If (OCCFLAG == 0)

Update the appearance modelAt+1 using Ẑt.

End

End

Fig. 3. The proposed visual tracking algorithm with occlusion handling.

motion velocity to zero, i.e.,νt = 0 and use the maximum number of particles sampled from

the diffusion process with largest variance, i.e.,Rt = Rmax, andJt = Jmax.

The adaptive particle filtering algorithm with occlusion analysis is summarized in Fig. 3.

VI. EXPERIMENTAL RESULTS ON VISUAL TRACKING

In our implementation, we used the following choices. We consider affine transformations

only. Specifically, the motion is characterized byθ = (a1, a2, a3, a4, tx, ty) where{a1, a2, a3, a4}
are deformation parameters and{tx, ty} denote the 2-D translation parameters. Even though

significant pose/illumincation changes are present in the video, we believe that our adaptive

appearance model can easily absorb them and therefore for our purposes the affine transformation

is a reasonable approximation. Regarding photometric transformations, only a zero-mean-unit-
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variance normalization is used to partially compensate forcontrast variations. The complete im-

age transformationT {Y ; θ} is implemented as follows: affine transformY using{a1, a2, a3, a4},

crop out the region of interest at position{tx, ty} with the same size as the still template in the

appearance model, and perform zero-mean-unit-variance normalization.

We demonstrate our algorithm by tracking a disappearing car, a moving tank from micro air

vehicle, and a moving face under occlusion. Table I summarizes some statistics about the video

sequences and the appearance model size used.

Video Car Tank Face

# of frames 500 300 800

Frame size 576x768 240x360 240x360

At size 24x30 24x30 30x26

Occlusion No No Yes (twice)

‘adp’ o o x

‘fa’ o o x

‘fm’ x x x

‘fb’ x x x

‘adp & occ’ o o o

TABLE I

COMPARISON OF TRACKING RESULTS OBTAINED BY PARTICLE FILTERSWITH DIFFERENT CONFIGURATIONS. ‘At SIZE’

MEANS PIXEL SIZE IN THE COMPONENT(S) OF THE APPEARANCE MODEL. ‘ O’ MEANS SUCCESS IN TRACKING. ‘ X ’ MEANS

FAILURE IN TRACKING .

We initialize the particle filter and the appearance model with a detector algorithm (we actually

used the face detector described in [36] for the face sequence) or a manually specified image

patch in the first frame.R0 andJ0 are also manually set, depending on the sequence.

A. Car tracking

We first test our algorithm to track a vehicle with theF -component but without occlusion

analysis. The result of tracking a fast moving car is shown inFig. 4 (column 1)4. The tracking

result is shown with a bounding box. We also show the stable and wandering components

4Accompanying videos are available at http://www.cfar.umd.edu/∼shaohua/research/.
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Frame 1

Frame 100

Frame 300

Frame 500

Fig. 4. The car sequence. Notice the fast scale change present in the video. Column 1: the tracking results obtained with an

adaptive motion model and an adaptive appearance model (‘adp’).Column 2: the tracking results obtained with an adaptive

motion model but a fixed appearance model (‘fa’). In this case, the corner shows the tracked region. Column 3: the tracking

results obtained with an adaptive appearance model but a fixed motion model (‘fm’).

separately (in a double-zoomed size) at the corner of each frame. The video is captured by a

camera mounted on the car. In this footage the relative velocity of the car with respect to the

camera platform is very large, and the target rapidly decreases in size. Our algorithm’s adaptive

particle filter successfully tracks this rapid change in scale. Fig. 5(a) plots the scale estimate

(calculated as
√

(a2
1 + a2

2 + a2
3 + a2

4)/2 ) recovered by our algorithm. It is clear that the scale

follows a decreasing trend as time proceeds. The pixels located on the car in the final frame

are about 12 by 15 in size, which makes the vehicle almost invisible. In this sequence we set

J0 = 50 andR0 = 0.25. The algorithm implemented in a standard Matlab environment processes
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about 1.2 frames per second (withJ0 = 50) running on a PC with a PIII 650 CPU and 512M

memory.
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Fig. 5. (a) The scale estimate for the car. (b) The 2-D trajectory of the centroid of the tracked tank. ‘*’ means the starting and

ending points and ‘.’ points are marked along the trajectory every 10 frames. (c) The particle numberJt vs. t obtained when

tracking the tank. (d) The MSE invoked by the ‘adp’ and ‘fa’ algorithms.(e) The scale estimate for the face sequence.

B. Tank tracking in an aerial video

Fig. 6 shows our results on tracking a tank in an aerial video with degraded image quality due

to motion blur. Also, the movement of the tank is very jerky and arbitrary because of platform

motion, as evidenced in Fig. 5(b) which plots the 2-D trajectory of the centroid of the tracked

tank every 10 frames, covering from the left to the right in 300 frames. Although the tank moved

about 100 pixels in column index in a certain period of 10 frames, the tracking is still successful.

Fig. 5(c) displays the plot of actual number of particlesJt as a function of timet. The average

number of particle is about 83, where we setJ0 to be 100, which means that in this case we

actually saved about 20% in computation by using an adaptiveJt instead of a fixed number of

particles.
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Frame 1 Frame 31 Frame 49

Frame 116 Frame 228 Frame 300

Fig. 6. Tracking a moving tank in a video acquired by an airborne camera.

To further illustrate the importance of the adaptive appearance model, we computed the mean

square error (MSE) invoked by two particle filter algorithms, one (referred as ‘adp’ in Section

VI-D) using the adaptive appearance model and the other (referred as ‘fa’ in Section VI-D) using

a fixed appearance model. Computing the MSE for the ‘fa’ algorithm is straightforward, with

T0 denoting the fixed template,

MSEfa(t) = d−1
d

∑

j=1

(Ẑt(j) − T0(j))
2. (36)

Computing the MSE for the ‘adp’ algorithm is as follows:

MSEadp(t) = d−1
d

∑

j=1

{
∑

i=w,s,f

mi,t(Ẑt(j) − µi,t(j))
2}. (37)

Fig. 5(d) plots the functions ofMSEfa(t) andMSEadp(t). Clearly, using the adaptive appearance

model invokes smaller MSE for almost all300 frames. The average MSE for the ‘adp’ algorithm

is 0.13945 while that for the ‘fa’ algorithm is 0.3169!

C. Face tracking

We present one example of successful tracking of a human faceusing a hand-held video

camera in an office environment, where both camera and objectmotion are present.

5The range of MSE is very reasonable since we are using image patches after the zero-mean-unit-variance normalization not

the raw image intensities.
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Fig. 7 presents the tracking results on the video sequence featuring the following variations:

moderate lighting variations, quick scale changes (back and forth) in the middle of the sequence,

and occlusion (twice). The results are obtained by incorporating the occlusion analysis in the

particle filter, but we did not use theF -component. Notice that the adaptive appearance model

remains fixed during occlusion.

Fig. 8 presents the tracking results obtained using the particle filter without occlusion analysis.

We have found that the predicted velocity actually accountsfor the motion of the occluding hand

since the outlier pixels (mainly on the hand) dominate the image difference(T {Yt; θ̃t}− Ẑt−1).

Updating the appearance model deteriorates the situation.

Fig. 5(e) plots the scale estimate against timet. We clearly observe a rapid scale change (a

sudden increase followed by a decrease within about 50 frames) in the middle of the sequence

(though hard to display the recovered scale estimates are inperfect synchrony with the video

data).

D. Comparison

We illustrate the effectiveness of our adaptive approach (‘adp’) by comparing the particle filter

either with (a) an adaptive motion model but a fixed appearance model (‘fa’), or with (b) a fixed

motion model but an adaptive appearance model (‘fm’); or with (c) a fixed motion model and

a fixed appearance model (‘fb’). Table I lists the tracking results obtained using particle filters

under the above situations, where ‘adp & occ’ means the adaptive approach with occlusion

handling. Fig. 4 also shows the tracking results on the car sequence when the ‘fa’ and ‘fm’

options are used.

Table I seems to suggest that the adaptive motion model playsa more important role than

the adaptive appearance model since ‘fa’ always yields successful tracking while ‘fm’ fails, the

reasons being that (i) the fixed motion model is unable to adapt to quick motion present in the

video sequences, and (ii) the appearance changes in the video sequences, though significant in

some cases, are still within the range of the fixed appearancemodel. However, as seen in the

videos, ‘adp’ produces much smoother tracking results than‘fa’, demonstrating the power of the

adaptive appearance model.
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Frame 1 Frame 145 Frame 148

Frame 155 Frame 470 Frame 517

Frame 685 Frame 695 Frame 800

Fig. 7. The face sequence. Frames 145, 148, and 155 show the firstocclusion. Frames 470 and 517 show the smallest and

largest face observed. Frames 685, 690, and 710 show the secondocclusion.

VII. S IMULTANEOUS TRACKING AND RECOGNITION

Visual tracking models the inter-frame appearance differences and visual recognition models

the appearance difference between video frames and galleryimages. Simultaneous tracking and

recognition [7] is shown to be an effective approach for handling tracking and recognition. It

models appearance differences in both tracking and recognition in one framework, which actually

improves both tracking and recognition accuracies over theapproaches separating tracking and

recognition as two tasks. The proposed framework in [7] is rather general and accommodates

various model choices. The more effective the model choicesare, improved performance in

tracking and recognition is expected. Another important feature of [7] is the accumulation of

recognition evidence in a probabilistic, recursive, and interpretable manner. In this paper, we

attempt to demonstrate the effectiveness of the proposed model choices using experiments on a
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Frame 1 Frame 145 Frame 148

Frame 155 Frame 170 Frame 200

Fig. 8. Tracking results on the face sequence using the adaptive particlefilter without occlusion analysis.

challenging dataset that has significant pose and illumination variations.

We assume that there is a gallery set{I1, ..., IN} with each individualn possessing one facial

image In in frontal view. Heren is treated as a random variable taking value in the sample

spaceN = {1, 2, ..., N}. The essence of our framework is posterior probability computation, i.e.,

computingp(nt, θt|Y1:t), whose marginal posterior probabilityp(nt|Y1:t) solves the recognition

task and whose marginal posterior probabilityp(θt|Y1:t) solves the tracking task.

After a brief review of the time series model for recognitionin Sec. VII-A, we describe in

Sec. VII-B the three components yielding improvements. Experimental results and discussions

are then presented in Sec. VII-C.

A. Review of recognition model

We briefly present the propagation model for recognition, consisting of the following three

components, namely the motion transition equation, the identity equation, and the observation

likelihood and define the recognition task as a statistical inference problem, which can be solved

using particle filters.

Motion transition equation:We use the same adaptive-velocity motion model as describedin

Section IV.
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Identity equation: Denoting the identity variable bynt ∈ N = {1, 2, ..., N}, indexing the

gallery set{I1, ..., IN}, and assuming that the identity does not change as time proceeds, we

have

nt = nt−1, t ≥ 1. (38)

In practice, one may assume a small transition probability between identity variables to increase

the robustness.

Observation likelihood:In [7], our empirical results show that combining contributions (or

scores) from both tracking and recognition in the likelihood yields the best performance in both

tracking and recognition.

To compute the tracking scorepa(Yt|θt) which measures the inter-frame appearance changes,

we use the appearance model introduced in Section III and thequantity defined in (10) as

pa(Yt|θt).

To compute the recognition score which measures the appearance changes between probe

videos and gallery images, we assume that the transformed observation is a noise-corrupted

version of some still template in the gallery, i.e.,

Zt = Int
+ Xt, t ≥ 1, (39)

whereXt is theobservation noiseat timet, whose distribution determines the recognition score

pn(Yt|nt, θt). We will physically define this quantity in Sec. VII-B.

To fully exploit the fact that all gallery images are in frontal view, we also compute in Sec.

VII-B how likely the patchZt is in frontal view and denote this score bypf (Yt|θt). If the patch is

in frontal view, we accept a recognition score; otherwise, we simply set the recognition score as

equiprobable among all identities, i.e.,1/N . The complete likelihoodp(Yt|nt, θt) is now defined

as

p(Yt|nt, θt) ∝ pa {pf pn + (1 − pf ) N−1}. (40)

Particle filter for solving the model:We assume statistical independence between all noise

variables and prior knowledge on the distributionsp(θ0) andp(n0) (uniform prior in fact). Given

this model, our goal is to compute the posterior probabilityp(nt|Y1:t). It is in fact a probability

mass function (PMF) sincent only takes values fromN = {1, 2, ..., N}, as well as a marginal

probability ofp(nt, θt|Y1:t), which is a mixed-type distribution. Therefore, the problem is reduced

to computing the posterior probability.
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Since the model is nonlinear and non-Gaussian in nature, there is no analytic solution.

We invoke a particle filter to provide numerical approximations to the posterior distribution

p(nt, θt|Y1:t). Also, for this mixed-type distribution, we can greatly improve the computational

load by judiciously utilizing the discrete nature of the identity variable as in [7]. We [7] also

theoretically justified the evolving behavior of the recognition densityp(nt|Y1:t) under a weak

assumption.

Initialize a sample setS0 = {θ
(j)
0 , w

(j)
0 = 1/J0)}

J0

j=1 according to prior distributionp(θ0). Setβ0,l = 1/N .

Initialize appearance modeA1.

For t = 1, 2, . . .

Calculate the MAP estimatêθt−1, the adaptive motion shiftνt by Eq. (21), the noise variancert by Eq. (30),

and particle numberJt by Eq. (44).

For j = 1, 2, . . . , Jt

Draw the sampleU (j)
t for Ut with varianceRt.

Construct the sampleθ(j)
t by Eq. (29).

Compute the transformed imageZ(j)
t .

For l = 1, 2, ..., N

Update the weight usingα(j)
t,l = βt,lp(Yt|l, θ

(j)
t ) = βt,lp(Z

(j)
t |l, θ

(j)
t ) by Eq. (40).

End

End

Normalize the weight usingw(j)
t,l = α

(j)
t,l /

∑

j,l
α

(j)
t,l and computew(j)

t =
∑

j
w

(j)
t,l and βt,l =

∑

j
w

(j)
t,l .

Update the appearance modelAt+1 using Ẑt.

End

Fig. 9. The visual tracking and recognition algorithm.

B. Model components in detail

As mentioned earlier, the proposed algorithm incorporatesthree components which improve

our previous approach [7]. We will now examine each of these components in greater detail.

The proposed algorithm is then summarized.

Modeling inter-frame appearance changes:Inter-frame appearance changes are related to the

motion transition model and the appearance model for tracking, which were explained in Sections

III and IV.
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Being in frontal view: Since all gallery images are in frontal view, we simply measure the

extent of being frontal by fitting a probabilistic subspace (PS) density on the top of the gallery

images [37], [15], assuming that they are i.i.d. samples from the frontal face space (FFS). The

method works as follows: a regular PCA is first performed (zeromean is assumed by removing

the sample mean). Suppose the eigensystem for the FFS is{(λi, ei)}d
i=1, whered is the number

of pixels andλ1 ≥ ... ≥ λd. Only tops principal components corresponding to tops eigenvalues

are then kept while the residual components are considered as isotropic. We refer the reader to

the original paper [37] for full details. The PS density is written as follows:

Q(x) = {
exp(−1

2

∑s
i=1

q2
i

λi
)

(2π)s/2
∏s

i=1 λ
1/2
i

}{
exp(− err2

2ρ
)

(2πξ)(d−s)/2
}, (41)

whereqi = eT
i x for i = 1, ..., s is the ith principal component ofx, err2 = ‖x‖2 − ∑s

i=1 q2
i is

the reconstruction error, andξ = (
∑d

i=s+1 λi)/(d − q). It is easy to writepf (Yt|θt) as follows:

pf (Yt|θt) = QFFS(Zt). (42)

Modeling appearance changes between probe video frames and gallery images: We adopt

the MAP rule developed in [15] for the recognition scorepn(Yt|nt, θt). Two subspaces are

constructed to model appearance variations. The intra-personal space (IPS) is meant to cover

all the variations in appearances belonging to the same person while the extra-personal space

(EPS) is used to cover all the variations in appearances belonging to different people. More than

one facial image per person is needed to construct the IPS. Apart from the available gallery,

we crop out four images from the video ensuring no overlap with frames used in probe videos.

The above PS density estimation method is applied separately to the IPS and the EPS, yielding

two different eigensystems. The recognition scorepn(Yt|nt, θt) is finally computed as, assuming

equal priors on the IPS and the EPS,

pn(Yt|nt, θt) =
QIPS(Zt − Int

)

QIPS(Zt − Int
) + QEPS(Zt − Int

)
. (43)

Proposed algorithm:We adjust the particle numberJt based on the following considerations.

(i) The first issue is same as (31) based on prediction error. (ii) As proved in [7], the uncertainty

in the identity variablent is characterized by an entropy measureHt for p(nt|Y1:t) andHt is a

non-increasing function (under one weak assumption). Accordingly, we increase the number of
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particles by a fixed amountJfix if Ht increases; otherwise we deductJfix from Jt. Combining

these two, we have

Jt = J0
Rt

R0

+ Jfix ∗ (−1)i[Ht−1<Ht−2]}, (44)

wherei[.] is an indication function.

The proposed particle filtering algorithm for simultaneoustracking and recognition is summa-

rized in Fig. 9, wherew(j)
t,l is the weight of the particle(nt = l, θt = θ

(j)
t ) for the posterior density

p(nt, θt|Y1:t); w
(j)
t is the weight of the particleθt = θ

(j)
t for the posterior densityp(θt|Y1:t); and

βt,l is the weight of the particlent = l for the posterior densityp(nt|Y1:t). Occlusion analysis

can also be included in Fig. 9.

C. Experimental results on visual tracking and recognition

We have applied our algorithm for tracking and recognizing human faces captured by a

hand-held video camera in office environments . There are 29 subjects in the database. Fig.

10 lists all the images in the galley set and the top 10 eigenvectors for the FFS, IPS, and

EPS, respectively. Fig. 11 presents some frames (with tracking results) in the video sequence

for ‘Subject-2’ featuring quite large pose variations, moderate illumination variations, and quick

scale changes ( back and forth toward the end of the sequence).

Tracking is successful for all video sequences and 100% recognition rate is achieved, while

our previous approach [7] failed to track in several video sequences due to its inability to

handle significant appearance changes caused by pose and illumination variations. The posterior

probabilitiesp(nt|Y1:t) with nt = 1, 2, ...N obtained for the ‘Subject-2’ sequence are plotted

in Fig. 12(a). We start from uniform prior for the identity variable, i.e., p(n0) = N−1 for

n0 = 1, 2, ...N . It is very fast, taking about less than 10 frames, to reach above 0.9 level for

the posterior probability corresponding to ‘Subject-2’, while all other posterior probabilities

corresponding to other identities approach zero. This is mainly attributed to the discriminative

power of the MAP recognition score induced by IPS and EPS modeling. The previous approach

[7] usually takes about 30 frames to reach 0.9 level since only intra-personal modeling is adopted.

Fig. 12(b) captures the scale change in the ‘Subject-2’ sequence.
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Fig. 10. Row 1-3: the gallery set with 29 subjects in frontal view. Rows 4, 5, and 6: the top 10 eigenvectors for the FFS, IPS,

and EPS, respectively.

VIII. C ONCLUSIONS

We have presented an adaptive method for visual tracking which stabilizes the tracker by

embedding deterministic linear prediction into stochastic diffusion. Numerical solutions have

been provided using particle filters with the adaptive observation model arising from the adaptive

appearance model, adaptive state transition model, and adaptive number of particles. Occlusion

analysis is also embedded in the particle filter. Our algorithm was tested on several tasks

consisting of tracking visual objects such as car, tank and human faces in realistic scenarios.

We have improved our simultaneous tracking and recognitionapproach previously proposed

in [7]. More complex models, namely adaptive appearance model, adaptive-velocity transition

model, and intra- and extra-personal space models, are introduced to handle appearance changes

between frames and between frames and gallery images. The fact that the gallery images are in

frontal view is enforced too. Experimental results demonstrate that the tracker is stable and the

recognition performance is good.
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Frame 1 Frame 160 Frame 290

Frame 690 Frame 750 Frame 800

Fig. 11. Example images in ‘Subject-2’ probe video sequence and the tracking results.
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L IST OF FIGURE/TABLE CAPTIONS

Figure 1 The general particle filter algorithm.

Figure 2 Particle configurations from (top row) the adaptivevelocity model and (bottom row)

the zero-velocity model.

Figure 3 The proposed visual tracking algorithm with occlusion handling.

Figure 4 The car sequence. Notice the fast scale change present in the video. Column 1:

the tracking results obtained with an adaptive motion modeland an adaptive appearance model

(‘adp’). Column 2: the tracking results obtained with an adaptive motion model but a fixed

appearance model (‘fa’). In this case, the corner shows the tracked region. Column 3: the tracking

results obtained with an adaptive appearance model but a fixed motion model (‘fm’).

Figure 5 (a) The scale estimate for the car. (b) The 2-D trajectory of the centroid of the

tracked tank. ‘*’ means the starting and ending points and ‘.’ points are marked along the

trajectory every 10 frames. (c) The particle numberJt vs. t obtained when tracking the tank. (d)

The MSE invoked by the ‘adp’ and ‘fa’ algorithms. (e) The scale estimate for the face sequence.

Figure 6 Tracking a moving tank in a video acquired by an airborne camera.

Figure 7 The face sequence. Frames 145, 148, and 155 show the first occlusion. Frames 470

and 517 show the smallest and largest face observed. Frames 685, 690, and 710 show the second

occlusion.

Figure 8 Tracking results on the face sequence using the adaptive particle filter without

occlusion analysis.

Figure 9 The visual tracking and recognition algorithm.

Figure 10 Row 1-3: the gallery set with 29 subjects in frontal view. Rows 4, 5, and 6: the top

10 eigenvectors for the FFS, IPS, and EPS, respectively.

Figure 11 Example images in ‘Subject-2’ probe video sequence and the tracking results.

Figure 12 Results on the ‘Subject-2’ sequence. (a) Posteriorprobabilities against timet for

all identitiesp(nt|Y1:t), nt = 1, 2, ..., N . The line close to 1 is for the true identity. (b) Scale

estimate against timet.

Table I Comparison of tracking results obtained by particle filters with different configurations.

‘At size’ means pixel size in the component(s) of the appearancemodel. ‘o’ means success in

tracking. ‘x’ means failure in tracking.
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