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Abstract

We propose an approach that incorporates appearance-based models in a particle filter to real-
ize robust visual tracking and recognition algorithms. In conventional tracking algorithms, the
appearance model is either fixed or rapidly changing, and the motion model is simply a ran-
dom walk with fixed noise variance. Also, the number of particles is typically fixed. All these
factors make the visual tracker unstable. To stabilize the tracker, we propose the following fea-
tures: an observation model arising from an adaptive appearance model, an adaptive velocity
motion model with adaptive noise variance, and an adaptive number of particles. The adaptive-
velocity model is derived using a first-order linear predictor based on the appearance difference
between the incoming observation and the previous particle configuration. Occlusion analysis
is implemented using robust statistics. Experimental results on tracking visual objects in long
outdoor and indoor video sequences demonstrate the effectiveness and robustness of our track-
ing algorithm. We then perform simultaneous tracking and recognition by embedding them in
one particle filter. For recognition purposes, we model the appearance changes between frames
and gallery images by constructing the intra- and extra-personal spaces. Accurate recognition is
achieved when confronted by pose and view variations.
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Abstract

We present an approach that incorporates appearanceavadaysidels in a particle filter to realize
robust visual tracking and recognition algorithms. Tragkineeds modeling inter-frame motion and
appearance changes whereas recognition needs modeliegrappe changes between frames and gallery
images. In conventional tracking algorithms, the appeaanodel is either fixed or rapidly changing,
and the motion model is simply a random walk with fixed noiseéarae. Also, the number of particles is
typically fixed. All these factors make the visual trackestaile. To stabilize the tracker, we propose the
following modifications: an observation model arising fram adaptive appearance model, an adaptive
velocity motion model with adaptive noise variance, and @apéive number of particles. The adaptive-
velocity model is derived using a first-order linear predlidiased on the appearance difference between
the incoming observation and the previous particle condijom. Occlusion analysis is implemented
using robust statistics. Experimental results on trackisgal objects in long outdoor and indoor video
sequences demonstrate the effectiveness and robustness tficking algorithm. We then perform
simultaneous tracking and recognition by embedding them pavrticle filter. For recognition purposes,
we model the appearance changes between frames and galleggs by constructing the intra- and

extra-personal spaces. Accurate recognition is achievezhwonfronted by pose and view variations.
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I. INTRODUCTION

Particle filtering [1] is an inference technique for estimgthe unknown motion staté,, from
a noisy collection of observationy;., = {Y3,...,Y;} arriving in a sequential fashion. A state
space model is often employed to accommodate such a timessavo important components
of this approach are state transition and observation rsoghbse most general forms can be
defined as follows:
State transition model:0; = F,(0,_1,U,), (1)

Observation model:Y; = G;(6;, V;), (2)

whereU, is the system noisé;(., .) characterizes the kinematids, is the observation noise, and
G4(.,.) models the observer. The particle filter approximates tretepior distributionp(6;|Y1.;)
by a set of weighted particle§d”’, w”’}7_,. Then, the state estimat can either be the

minimum mean square error (MMSE) estimate,
a:@mwzmwmﬂzf4iw9w2 3)
j=1
or the maximum a posteriori (MAP) estimate,
0, = 0,"? = arg meettxp(QAYM) A arg meztlxng), 4)

or other forms based op(0;|Y7.).

The state transition model characterizes the motion chhetyeeen frames. In a visual tracking
problem, it is ideal to have an exact motion model governing kinematics of the object.
In practice, however, approximate models are used. Theretvan types of approximations
commonly found in the literature. (i) One is to learn a motmodel directly from a training
video [2], [3]. However such a model may overfit the trainingtad and may not necessarily
succeed when presented with testing videos containingctsbprbitrarily moving at different
times and places. Also one cannot always rely on the avhilabf training data. (i) Secondly,

a fixed constant-velocity model with fixed noise variance tiedi as in [4], [5], [6], [7]-

0, = 0,_1 + U, (5)
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whereU; has a fixed noise variance of the foffp = R, U, with R, a fixed constant measuring
the extent of noise andl, a ‘standardized’ random variable/vectorlf R, is small, it is very
hard to model rapid movements; i, is large, it is computationally inefficient since many more
particles are needed to accommodate the large noise variafichese factors make use of such
a model ineffective. In this paper, we overcome this by iimng an adaptive-velocity model.
While contour is the visual cue used in many tracking algorgh2], another class of tracking
approaches [8], [9], [7] exploit an appearance model In its simplest form, we have the

following observation equatidn
Zy=T{Y;0 ) = A+ V, (6)

whereZ, is the image patch of interest in the video fraieparameterized bg,. In [8], a fixed
template,A; = Ay, is matched with observations to minimize a cost functiothimform of sum
of squared distance (SSD). This is equivalent to assumiagtkie noise/; is a normal random
vector with zero mean and a diagonal (isotropic) covariamedrix. At the other extreme, one
could use a rapidly changing model [9], say, = Z,_1, i.e., the ‘best’ patch of interest in
the previous frame. However, a fixed template cannot hanuibearance changes in the video,
while a rapidly changing model is susceptible to drift. Thil§s necessary to have a model
which is a compromise between these two cases. In [10], depiscal. proposed an online
appearance model (OAM) for a robust visual tracker, which mixture of three components.
Two EM algorithms are used, one for updating the appearamzehand the other for deriving
the tracking parameters.

Our approach to visual tracking is to make both observatiod state transition models
adaptive in the framework of a particle filter, with provisgofor handling occlusion. The main

features of our tracking approach are as follows:

« Appearance-based. The only visual cue used in our trackbei2-D appearance; i.e., we
employ only image intensities, though in general featuresvdd from image intensities,

such as the phase information of the filter responses [10Jher Gabor feature graph

Consider the scalar case for exampleUlfis distributed adN(0, o%), we can writeU; = oU, wherel, is standard normal
N(0,1). This also applies to multivariate cases.

2For the sake of simplicity, we denot&;, = T{Y;;6:}, Z\) = T{Y:;6}, Z, = T{Y:;6,}. Also, we can always vectorize
the 2-D image by a lexicographical scanning of all pixels and denote timbeuof pixels byd.
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presentation [11], are also applicable. No prior object et®dare invoked. In addition,
we only use gray scale images.

« Adaptive observation model. We adopt an appearance-bggedaech. The original online
appearance model (OAM) is modified and then embedded in aticlesfilter. Therefore,
the observation model is adaptive as the appearandevolved in Eq. (6) is adaptive.

« Adaptive state transition model. Instead of using a fixed @hode use an adaptive-velocity
model, where the adaptive motion velocity is predicted gisiriirst-order linear approxima-
tion based on the appearance difference between the ingavbservation and the previous
particle configuration. We also use an adaptive noise comomne,U; = R, x Uy, whose
magnitude R, is a function of the prediction error. It is natural to varyethumber of
particles based on the degree of uncertaiRtyin the noise component.

. Handling occlusion. Occlusion is handled using robusisttes [12], [8], [13]. We robustify
the likelihood measurement and the adaptive velocity edgrby downweighting the ‘out-
lier pixels. If occlusion is declared, we stop updating Hppearance model and estimating
the motion velocity.

Video-based recognition needs to handle uncertaintiestin foacking and recognition. While
conventional methods [14] resolve these uncertaintiearaggly, i.e. tracking followed by recog-
nition, we have proposed in [7] a framework to model both urabeties in a unified way
to realize simultaneous tracking and recognition. As eweel by the empirical results (on
a relatively modest databases) in [7], this algorithm impsoits recognition rate over the
conventional ones without sacrificing accuracy in tracking

We focus on face recognition in this paper. Though the timreesdormulation allows very
general models, our earlier efforts invoked rather simplesp which may yield unsatisfactory
results in both tracking and recognition when confrontedsbyere pose and illumination vari-
ations. We improve our approach in the following three atpgg) Modeling the inter-frame
motion and appearance changes within the video sequenddp(eling the appearance changes
between the video frames and gallery images by construatiing- and extra-personal spaces
which can be treated as a ‘generalized’ version of discitnme analysis [15]; and (iii) Utilizing
the fact that the gallery images are in frontal views. By endlogglthese in a patrticle filter, we
are able to achieve a stabilized tracker and an accuratgnmizes to handle pose and illumination

variations.
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This paper is organized as follows. We briefly review theteslditerature on visual tracking
and particle filters in Section Il. We examine the details ofaalaptive observation model in
Section lll, with a special focus on the adaptive appearanodel, and of an adaptive state
transition model in Section IV with a special focus on how tdcalate the motion velocity.
Handling occlusion is discussed in Section V, and experalaasults on tracking vehicles and
human faces in Section VI. Simultaneous tracking and reitiognis discussed in Section VII,

with conclusions presented in Section VIII.

Il. RELATED WORK ON VISUAL TRACKING AND PARTICLE FILTERS
A. Visual tracking

Roughly speaking, previous work on visual tracking can beddw into two groups: deter-
ministic tracking and stochastic tracking. Our approacimloimes the merits of both stochastic
and deterministic tracking approaches in a unified framkwing a particle filter. We give
below a brief review of both approaches.

Deterministic approaches usually reduce to an optimimapeoblem, e.g., minimizing an
appropriate cost function. The definition of the cost fumctis a key issue. A common choice
in the literature is the SSD used in many optical flow appreacf8]® A gradient descent
algorithm is most commonly used to find the minimum. Very oftenly a local minimum can
be reached. In [8], the cost function is defined as the SSDdmivthe observation and a fixed
template, and the motion is parameterized as affine. Herecagk is to find the affine parameter
minimizing the cost function. Using a Taylor series expansand keeping only the first-order
terms, a linear prediction equation is obtained. It has @wn that for the affine case, the
system matrix can be computed efficiently since a fixed teteptaused. Mean shift [16] is an
alternative deterministic approach to visual trackingevehthe cost function is derived from the
color histogram.

Stochastic tracking approaches often reduce to an estimgtoblem, e.g., estimating the state
for a time series state space model. Early works [17], [L8duke Kalman filter or its variants

[19] to provide solutions. However, this restricts the tygfemodel that can be used. Recently

3We note that using SSD is equivalent to using a model where the noiss abeljd Gaussian distribution; therefore this

case can also be viewed as stochastic tracking.
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sequential Monte Carlo (SMC) algorithms [1], [20], [21], [22]hich can model nonlinear/non-
Gaussian cases, have gained prevalence in the trackirggjuite due in part to the SIDENSATION
algorithm [2]. Stochastic tracking improves robustnessrats deterministic counterpart by its
capability for escaping local minimum since the searchdtioas are for the most part random
even though they are governed by a deterministic stateiti@nsnodel. Toyama and Blake
[23] proposed a probabilistic paradigm for tracking witle tfollowing properties: Exemplars
are learned from the raw training data and embedded in a raixdansity; The kinematics is
also learned; The likelihood measurement is constructed ametric space. Other approaches
are also discussed in Section 1I-B. However, as far as the otatipnal load is concerned,
stochastic algorithms in general are more intense. Notethieastochastic approaches often lead

to optimization problems too.

B. Particle Filter

General algorithm:Given the state transition model in (1) characterized bystage transition
probability p(6;|6,_1) and the observation model in (2) characterized by the hioald function
p(Y;|0;), the problem is reduced to computing the posterior prolighil6,|Y;.;) The nonlinear-
ity/nonnormality in (1) and (2) result in Kalman filter [19klmng ineffective. The patrticle filter
is @ means to approximate the posterior distributigé,|Y;.;) by a set of weighted particles
S, = {0, w7, with Y7, wi’” = 1. It can be shown [20] tha$; is properly weightedith

respect top(6;|Y1.;) in the sense that, for every bounded functidn),

Jim iw?)h(et‘”) = E,[h(6)]. (7)

J—o0 4
Given S, = {Qﬁ@l,wﬁ)l}jzl which is properly weighted with respect 146, 1|Y1.;_1), we
first resampleS;_; to reach a new set of samples with equal weiqmﬁéq, 1}7_,. We then draw
samples{U,”’}7_, for U, and propagaté,”] to 6, by Eq. (1). The new weight is updated as
wy o< p(Y]64) (8)
The complete algorithm is summarized in Fig. 1.
Variations of Particle Filters:Sequential Importance Sampling (SIS) [20], [24] drawsiphkas

from aproposal distributiory(6;|0,_+, Y1..) and then for each particle a proper weight is assigned

as follows:
Wy X p(n‘et)p(et|9t71)/g(9t’9t717 Yl:t)- (9)
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Initialize a sample seS, = {9(()”, 1)}/_, according to prior distributionp(6o).
For t =1,2,...
For j=1,2,...,J
Resample S,_; = {6, w"),} to obtain a new sampléy, ), 1).
Predict the sample by drawing/? for U, and computing\’”’ = F,(6,%), U{?).
Compute the transformed image”.
Update the weight usingo”) = p(Y;|0) = p(z17|817).
End
Normalize the weight usingo” = w(”/ 37 w?.
End

Fig. 1. The general particle filter algorithm.

Selection of the proposal distributiof(6;|¢;—1, Y1.) is usually dependent on the application.
For example, in the IGNDENSATION algorithm [25] which fuses low-level and high-level visual
cues in the conventionaldBDENSATION algorithm [2], the proposal distribution, a fixed Gaussian
distribution for low-level color cue, is used to predict herticle configurations, then the posterior
distribution of the high-level shape cue is approximatet@i$IS. It is interesting to note that
two different cues can be even combined together into orie gé&tor to yield a robust tracker,
using the co-inference algorithm [6] and the approach pgegan [26]. We also use a prediction
scheme but our prediction is based on the same visual cube.appearance in the image, and it
is directly used in the state transition model rather thaadwes a proposal distribution. Additional

visual cues are not used.

[11. ADAPTIVE OBSERVATION MODEL

The adaptive observation model arises from the adaptiveappce modeH;. We use a
modified version of OAM as developed in [10]. The differenbesween our appearance model

and the original OAM are highlighted below.

A. Mixture appearance model

The original OAM assumes that the observations are explalnyedifferent causes, thereby
indicating the use of a mixture density of components. Indhginal OAM presented in [10],

three components are used, namely tHiecomponent characterizing the two-frame variations,
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the S-component depicting the stable structure within all pdsteovations (though it is slowly-
varying), and thel-component accounting for outliers such as occluded pixels

We modify the OAM to accommodate our appearance analysikarfdllowing aspects. (i)
We directly use the image intensities while they use phafenration derived from the image
intensities. Direct use of the image intensities is comgtally more efficient than using the
phase information that requires filtering and visually morerpretable. (i) As an option, in
order to further stabilize the tracker one could useFanomponent which is a fixed template
that one is expecting to observe most often. For exampleage tracking this could be just
the facial image as seen from a frontal view. In the sequelderé/e the equations as if there
is an F’-component. However, the effect of this component can bergghby setting its initial
mixing probability to zero. (iii) We embed the appearancedgian a particle filter to perform
tracking while they use the EM algorithm. (iv) In our implemation, we do not incorporate
the L-component because we model the occlusion in a differennerafusing robust statistics)
as discussed in Sec. V.

We now describe the mixture appearance model. The appearandel at timet, A, =
{W4, Sy, Fi}, is a time-varying one that models the appearances presatitabservations up to
time ¢ —1. It obeys a mixture of Gaussians, withi,, S;, F; as mixture center§u, ;; i = w, s, f}
and their corresponding variancgs’,; i = w, s, f} and mixing probabilitiegm,;; i = w, s, f}.
Notice that{ml-7t,m,t,o§t; i=w,s, f} are ‘images’ consisting of pixels that are assumed to
be independent of each other.

In summary, the observation likelihood is written as

d
p(Yel0) = p(Z:|0:) = H{ mem Zi(5): i (5), 074 (7)) 1+ (10)
whereN(z; i, o%) is a normal density

1 22

N(z: . 0%) = (270%) 2 exp{—p(*—L)}, p(z) = (11)

B. Model update

To keep our paper self-contained, we show how to update ttrerduappearance moddl to
A after Z, becomes available, i.e., we want to compute the new mixiobatilities, mixture

centers, and variances for time- 1, {mmﬂ,ui,m,aﬁm; i=w,s, [}



IEEE TRANSACTION ON IMAGE PROCESSING., VOL. X, NO. Y, MONTH@®4 9

It is assumed that the past observations are exponentialtgotten’ with respect to their
contributions to the current appearance model. Denote xipenential envelop by, (k) =
aexp(—771(t—k)) for k < t, wherer = n;/log 2, n;, is the half-life of the envelope in frames,
anda = 1 — exp(—7~') to guarantee that the area under the envelope is 1. We justhste
updating equations as follows and refer the interestedersat [10] for technical details and
justifications.

The EM algorithm [27] is invoked. Since we assume that thelpibare independent of each
other, we can deal with each pixel separately. The followtognputation is valid for; =
1,2,...,d whered is the number of pixels in the appearance model.

Firstly, the posterior responsibility probabilities arengputed as

Oi,t(j) (S8 mi,t(j)N(Z (7); /ht(])v th(j)); i=w,s, f, & Z Oi,t(j) =L (12)

i:wvsvf

Then, the mixing probabilities are updated as
Mig1(j) = @ 0i4(j) + (1 — ) mi(j); i =w,s, f, (13)
and the first- and second-moment imagés,, ;; p = 1,2} are evaluated as
Mp41(j) = o Zt( )os2(j) + (1 —a) Mp(j); p=1,2. (14)

Finally, the mixture centers and the variances are updaed a

. . Mip1(J) 2 . M, tH(]) 2 .
S = s = ! 2 . 15
t+1(j) H ,t+1(j) M i1 (]) A1 (]) m, t+1(]> — K RAS (]) ( )
Wia(j) = fwir1(J) = Zt( ), 0-12u,t+1<j) = 0-120,1<j)7 (16)
Fipi(§) = e (G) = F1(J), 0-]2‘,t+1(j) = 0,20,1(1)- (17)
C. Model initialization
To initialize A,, we setW; = S; = F; = Tq (with T, supplied by a detection algorithm or

manually),{mi,l, 07;271; 1 =w,S, f}, andMLl = m&lTo and Mg,l = m5710571 + T02
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V. ADAPTIVE STATE TRANSITION MODEL

The state transition model we use incoporates a term for hmgdadaptive velocity. The adap-
tive velocity is calculated using a first-order linear patidin method based on the appearance
difference between two successive frames. The previouglgaconfiguration is incorporated in
the prediction scheme.

Construction of the particle configuration involves the osbmputation of image warping
(in the experiments reported here, it usually accounts baug half of the computations). In a
conventional particle filtering algorithm, the particlendiguration is used only to update the
weight, i.e., computing weight for each particle by compgrithe warped image with the
online appearance model using the observation equation. dutapproach in addition uses
the particle configuration in the state transition equatlanrsome sense, we ‘maximally’ utilize
the information contained in the particles (without wagtithe costly computation of image
warping) since we use it in both state and observation models

In [28], random samples are guided by deterministic sedvtdmentum for each particle is
computed as the sum of absolute difference between two fathéhe momentum is below a
threshold, a deterministic search is first performed usiggaaient descent method and a small
number of offsprings is then generated by stochastic ddfysotherwise, stochastic diffusion
is performed to generate a large number of offsprings. Tbehsistic diffusion is based on
a second-order autoregressive process. But, the gradisnemtemethod does not utilize the
previous particle configuration in its entirety. Also, thengrated particle configuration could
severely deviate from the second-order autoregressiveinatiich clearly implies the need for

an adaptive model.

A. Adaptive velocity

With the availability of the sample séd, | = {9,@1}3]:1 and the image patches of interest
Zi = {Zt@ﬁ;’:p for a new observationy;, we can predict the shift in the motion vector (or
adaptive velocity);, = 0, — 0, 4 using a first-order linear approximation [8], [29], [30],1]3

which essentially comes from the constant brightness wainsti.e., there exists & such that

T{Vi0} ~ 7 1. (18)
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Approximating 7 {Y;; 6,} using a first-order Taylor series expansion aroén@we setf, =
6, ) yields
T{Y}; et} = T{Y}; ét} =+ Ct(et - ét) = T{Y;t; ét} + Cyuy, (19)

whereC,; is the Jacobian matrix.
Combining (18) and (19) gives

Ty g o~ T{Y}; ét} + Gy, (20)

vy =0, — ét ~ —Bt(T{Yt; ét} - Zt—1)7 (21)

where B; is the pseudo-inverse of thg; matrix, which can be efficiently estimated from the

available dat&®,_; and Z,_;.
Specifically, to estimatés; we stack into matrices the differences in motion vectorsiaratje

patches, using;_; and Z,_; as pivotal points:
O, =10 =0, 1, ..., 0 =06, 4], (22)
20 =1z9 =2y, ..., 2 = 2], (23)
The least square (LS) solution fd?; is
B = (0,2l )22l ]) 7", (24)

where (.)T means matrix transposition. However, it turns out that trarin 22,28 T is very
often rank-deficient due to the high dimensionality of theadanless the number of the particles
at least exceeds the data dimension). To overcome this, &thassingular value decomposition
(SVD).

20 =UsvT (25)

It can be easily shown that
B =0 vsuT. (26)

To gain some computational efficiency, we can further apprate

B =0 v,s-ul, (27)
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by retaining the toy components. Notice that if only a fixed template is used [#8,B matrix
is fixed and pre-computable. But, in our case, the appearanchanging so that we have to
compute theB;, matrix in each time step.

In practice, one may run several iterations Hll = T{Y}; 0, + v} stabilizes, i.e., the erray;

defined below is small enough.

6= 020 A) = 23 T mu(yp P ey 28)

J=1 i=ws,f Ui,t(j)
In (28), ¢, measures the distance betweEfY;; 0, + v} and the updated appearance maodel
The iterations proceed as follows: We initially ﬁt: 0,_,. For the first iteration, we compute
v} as usual. For thé'" iteration, we use the predicte?t{i = 0! + F~! as a pivotal point for
the Taylor expansion in (19) and the rest of the calculati@mntfollows. It is rather beneficial to
run several iterations especially when the object movey fast in two successive frames since
6,_, might cover the target ifY; in a small portion. After one iteration, the computedmight
be not accurate, but indicates a good minimization directldsing several iterations helps to
find v, (compared tdj,_;) more accurately.

We use the following adaptive state transition model
0, = 0,1+ v+ Us, (29)

wherev, is the predicted shift in the motion vector. The choicelfis discussed below. One
should note that we are not using (29) as a proposal functiairaw particles, which requires
using (9) to compute the particle weight. Instead we diyegfle it as the state transition model
and hence use (8) to compute the particle weight. Our modelbeaeasily interpreted as a
time-varying state model.

It is interesting to note that the approach proposed in [26) ases motion cues as well as
color parameter adaptation. Our approach is different ff@@) in that: (i) We use the motion
cue in the state transition model while they use it as partbsieovations; (i) We only use the
gray images without using the color cue which is used in [26d (iii)) We use an adaptive
appearance models which is updated by the EM algorithm whidéy use an adaptive color

model which is updated by a stochastic version of the EM #lyor.
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B. Adaptive noise

The value ofe; determines the quality of prediction. Thereforegifis small, which implies
a good prediction, we only need noise with small variancelisoeb the residual motion; if
¢; is large, which implies a poor prediction, we then need neigh large variance to cover
potentially large jumps in the motion state.

To this end, we usé/; of the formU, = R, «U,, whereR; is a function ofe;. Sincee; defined

in (28) is a ‘variance’-type measure, we use
R; = max(min(Ro+/€t, Rinaz ), Rimin), (30)

whereR,,;, is the lower bound to maintain a reasonable sample covera)&.a,. is the upper

bound to constrain the computational load.

C. Adaptive number of particles

If the noise variance?, is large, we need more particles, while conversely, fewetighes are
needed for noise with small varian¢g. Based on the principle of asymptotic relative efficiency

(ARE) [32], we should adjust the particle numbgrin a similar fashion, i.e.,
Ji = JoRy/ Ro. (32)

Fox [33] also presents an approach to improve the efficiehpadicle filters by adapting the
particle numbers on-the-fly. His approach is to divide tlesspace into bins and approximate
the posterior distribution by a multinomial distributioA. small number of particles is used if
the density is focused on a small part of the state space aadya humber of particles if the
uncertainty in the state space is high. In this way, the dseiween the empirical distribution
and the true distribution (approximated as a multinomidtisranalysis) measured by Kullback-
Leilber distance is bounded. However, in his approach,esithe state space (only 2D) is
exhaustively divided, the number of particles is at leasessd thousand, while our approach
uses at most a few hundred. Our attempt is not to explore @te space (6-D affine space)

exhaustively, but only the regions that have high poterfitiathe object to be present.

D. Comparison between the adaptive velocity model and thevadazity model

We demonstrate the necessity of the adaptive velocity mbgelomparing it with the zero

velocity model. Fig. 2 shows the particle configurationsated from the adaptive velocity model
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(with J, < Jy and R; < R, computed as above) and the zero velocity model (wjtk- J, and
R; = Ry). Clearly, the adaptive-velocity model generates pasiclery efficiently, i.e, they are
tightly centered around the object of interest so that we easily track the object at time
while the zero-velocity model generates more particleselyigpread to explore larger regions,

leading to unsuccessful tracking as widespread partidtes ¢ead to a local minimum.

Tracking result at — 1 Particle configuration at Tracking result at

Fig. 2. Particle configurations from (top row) the adaptive velocity maahel (bottom row) the zero-velocity model.

V. OCCLUSION HANDLING

Occlusion is usually handled in two ways. One way is to uset jeiobabilistic data associative
filter (JPDAF) [34], [35]; and the other one is to use robuatistics [12]. We use robust statistics

here.

A. Robust statistics

We assume that occlusion produces large image differentéshvean be treated as ‘out-
liers’. Outlier pixels cannot be explained by the underyprocess and their influences on the
estimation process should be reduced. Robust statistiesdpreuch mechanisms.

We use thep function defined as follows:

X s’ if |z] <c
plx) = L : (32)
cr —5c if |z >c
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wherez is normalized to have unit variance and the constacdntrols the outlier rate. In our
experiment, we take = 1.435 based on experimental experience/df > ¢ is satisfied, we

declare the corresponding pixel an outlier.

B. Robust likelihood measure and adaptive velocity esémat
The likelihood measure defined in Eq. (10) involves a muliehsional normal density. Since

we assume that each pixel is independent, we consider theior@sional normal density. To

make the likelihood measure robust, we replace the onerdiimeal normal densiti(z; p, 0%)

by

N(a: 1,0%) = (2m0”) ™2 exp(—p(—F)). (33)

Note that this is not a density function any more, but since axe dealing with discrete
approximation in the particle filter, normalization makées iprobability mass function.
Existence of outlier pixels severely violates the constamghtness constraint and hence
affects our estimate of the adaptive velocity. To downweitle influence of the outlier pixels
in estimating the adaptive velocity, we introducedax d diagonal matrix L, with its i
diagonal element being.(i) = n(z;) wherez; is the pixel intensity of the difference image

(T{Y;;0,} — Z,_,) normalized by the variance of the OAM stable component and

i _ [0 i el<e )

77(17) - 9
z dv efle| if |z >c
Eq. (21) becomes

v~ =B Ly(T{Ys; 0,1} — Zi_y). (35)

This is similar in principle to the weighted least squareoaltfym.

C. Occlusion declaration

If the number of the outlier pixels i&; (compared with the OAM), say,.., exceeds a certain
threshold, i.e.d,,; > Ad where0 < A\ < 1 (we takeX = 0.15), we declare occlusion. Since
the OAM has more than one component, we count the number béropixels with respect to
every component and take the maximum.

If occlusion is declared, we stop updating the appearancdehend estimating the motion

velocity. Instead, we (i) keep the current appearance moge] A;,; = A; and (ii) set the



IEEE TRANSACTION ON IMAGE PROCESSING., VOL. X, NO. Y, MONTH@®4 16

Initialize a sample seSy = {9(()”, 1/.]0)};.’11 according to prior distributionp(6o).
Initialize the appearance moded; .
Set OCCrrag = 0 to indicate no occlusion.
Fort=1,2,...
If (OCCrrac ==0)
Calculate the state estimaté;_; by Eq. (3) or (4), the adaptive velocity by Eq. (21), the noise variance
R: by Eqg. (30), and the particle numbei by Eq. (31).
Else
Rt = Rimaz, Jt = Jmax, vt = 0.
End
For j=1,2,...,J:
Draw the sampld]t(j) for U; with varianceR;.
Construct the sampled?) = 6, 1 + v, + U by Eq. (29).
Compute the transformed imageZ”.
Update the weight usings!”) = p(Y;|60\)) = p(Z2{|617)).
End
Normalize the weight usingo” = w(”/ 37 wi”.
Set OCCrrag according to the number of the outlier pixels .
If (OCCrrac ==0)
Update the appearance model;1 using Z;.
End
End

Fig. 3. The proposed visual tracking algorithm with occlusion handling.

motion velocity to zero, i.e.y; = 0 and use the maximum number of particles sampled from
the diffusion process with largest variance, i8;,,= R,.a., andJ; = J,,4z.

The adaptive particle filtering algorithm with occlusionadysis is summarized in Fig. 3.

VI. EXPERIMENTAL RESULTS ON VISUAL TRACKING

In our implementation, we used the following choices. We stder affine transformations
only. Specifically, the motion is characterized by= (a1, as, as, as, t, t,) where{a,, as, as, as}
are deformation parameters afd,,¢,} denote the 2-D translation parameters. Even though
significant pose/illumincation changes are present in tideos we believe that our adaptive
appearance model can easily absorb them and thereforerfpuguoses the affine transformation

is a reasonable approximation. Regarding photometric fomamations, only a zero-mean-unit-
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variance normalization is used to partially compensategmtrast variations. The complete im-
age transformatio {Y’; 6} is implemented as follows: affine transfoiusing{a, as, as, a4},
crop out the region of interest at positigh,, t,} with the same size as the still template in the
appearance model, and perform zero-mean-unit-variancaaliaation.

We demonstrate our algorithm by tracking a disappearingacanoving tank from micro air
vehicle, and a moving face under occlusion. Table | sumraarsome statistics about the video

sequences and the appearance model size used.

Video Car Tank Face
# of frames 500 300 800
Frame size | 576x768 240x360 240x360
Ay size 24x30 24x30 30x26
Occlusion No No Yes (twice)
‘adp’ o] o] X
‘fa’ o o} X
‘fm’ X X X
‘fb’ X X X
‘adp & occ’ o] o] o]
TABLE |

COMPARISON OF TRACKING RESULTS OBTAINED BY PARTICLE FILTERSVITH DIFFERENT CONFIGURATIONS ‘ A; SIZE’
MEANS PIXEL SIZE IN THE COMPONENTS) OF THE APPEARANCE MODEL ‘O’ MEANS SUCCESS IN TRACKING ‘X' MEANS

FAILURE IN TRACKING.

We initialize the particle filter and the appearance modéh widetector algorithm (we actually
used the face detector described in [36] for the face seg)emca manually specified image

patch in the first frameR, and J, are also manually set, depending on the sequence.

A. Car tracking

We first test our algorithm to track a vehicle with tii&component but without occlusion
analysis. The result of tracking a fast moving car is showfim 4 (column 14. The tracking

result is shown with a bounding box. We also show the stabb \@andering components

4Accompanying videos are available at http://www.cfar.umd.eghhohua/research/.
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Frame 1

Frame 100

Frame 300

BMES  Frame 500

Fig. 4. The car sequence. Notice the fast scale change present ifdéte €olumn 1: the tracking results obtained with an
adaptive motion model and an adaptive appearance model (‘adpfimn 2: the tracking results obtained with an adaptive
motion model but a fixed appearance model (‘fa’). In this case, tineer shows the tracked region. Column 3: the tracking

results obtained with an adaptive appearance model but a fixed motidel rfion’).

separately (in a double-zoomed size) at the corner of eachelr The video is captured by a
camera mounted on the car. In this footage the relative itglo¢ the car with respect to the
camera platform is very large, and the target rapidly des@®an size. Our algorithm’s adaptive

particle filter successfully tracks this rapid change inlesc&ig. 5(a) plots the scale estimate

(calculated as\/(a% + a3+ d% +a3)/2 ) recovered by our algorithm. It is clear that the scale
follows a decreasing trend as time proceeds. The pixeldddcan the car in the final frame
are about 12 by 15 in size, which makes the vehicle almossilnie. In this sequence we set
Jo = 50 and Ry = 0.25. The algorithm implemented in a standard Matlab envirortmpeocesses
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about 1.2 frames per second (with = 50) running on a PC with a PIll 650 CPU and 512M

memory.
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Fig. 5. (a) The scale estimate for the car. (b) The 2-D trajectory of th&raid of the tracked tank. **" means the starting and
ending points and ‘. points are marked along the trajectory every Tefsa (c) The particle numbek; vs. ¢ obtained when
tracking the tank. (d) The MSE invoked by the ‘adp’ and ‘fa’ algorithife). The scale estimate for the face sequence.

B. Tank tracking in an aerial video

Fig. 6 shows our results on tracking a tank in an aerial vidéb degraded image quality due
to motion blur. Also, the movement of the tank is very jerkydanrbitrary because of platform
motion, as evidenced in Fig. 5(b) which plots the 2-D trajegtof the centroid of the tracked
tank every 10 frames, covering from the left to the right if® 3tGames. Although the tank moved
about 100 pixels in column index in a certain period of 10 feanthe tracking is still successful.

Fig. 5(c) displays the plot of actual number of particlegs a function of time. The average
number of particle is about 83, where we sigtto be 100, which means that in this case we
actually saved about 20% in computation by using an adaptivestead of a fixed number of

particles.
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Frame 49

>
-7

Frame 116 Frame 228 Frame 300

Fig. 6. Tracking a moving tank in a video acquired by an airborne camera

To further illustrate the importance of the adaptive apgeee model, we computed the mean
square error (MSE) invoked by two particle filter algorithnose (referred as ‘adp’ in Section
VI-D) using the adaptive appearance model and the othesr(esf as ‘fa’ in Section VI-D) using
a fixed appearance model. Computing the MSE for the ‘fa’ algoriis straightforward, with

T, denoting the fixed template,

d
MSE;o(t) = d Y (Z:(5) — To(j))* (36)
7j=1
Computing the MSE for the ‘adp’ algorlthm is as follows:
MSEadp — d 12{ Z mzt Zt ,uzt( ))2} (37)
j=1 i=w,s,f

Fig. 5(d) plots the functions a¥/ SEy,(t) andM SE,q,(t). Clearly, using the adaptive appearance
model invokes smaller MSE for almost 8l)0 frames. The average MSE for the ‘adp’ algorithm
is 0.1394° while that for the ‘fa’ algorithm is 0.3169!

C. Face tracking

We present one example of successful tracking of a human dsitey a hand-held video

camera in an office environment, where both camera and ofyjetibn are present.

5The range of MSE is very reasonable since we are using image pafthetha zero-mean-unit-variance normalization not

the raw image intensities.
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Fig. 7 presents the tracking results on the video sequeratarieg the following variations:
moderate lighting variations, quick scale changes (backfarth) in the middle of the sequence,
and occlusion (twice). The results are obtained by incaog the occlusion analysis in the
particle filter, but we did not use thE-component. Notice that the adaptive appearance model
remains fixed during occlusion.

Fig. 8 presents the tracking results obtained using thécpafiiter without occlusion analysis.
We have found that the predicted velocity actually accotortshe motion of the occluding hand
since the outlier pixels (mainly on the hand) dominate thagendifferencd7{Y;;0,} — Z,_,).
Updating the appearance model deteriorates the situation.

Fig. 5(e) plots the scale estimate against tim&Ve clearly observe a rapid scale change (a
sudden increase followed by a decrease within about 50 §amehe middle of the sequence
(though hard to display the recovered scale estimates aperiect synchrony with the video
data).

D. Comparison

We illustrate the effectiveness of our adaptive approaati) by comparing the particle filter
either with (a) an adaptive motion model but a fixed appea&anadel (‘fa’), or with (b) a fixed
motion model but an adaptive appearance model (‘fm’); ohwd) a fixed motion model and
a fixed appearance model (‘fb’). Table I lists the trackingutes obtained using particle filters
under the above situations, where ‘adp & occ’ means the agappproach with occlusion
handling. Fig. 4 also shows the tracking results on the cquesgace when the ‘fa’ and ‘fm’
options are used.

Table | seems to suggest that the adaptive motion model play®re important role than
the adaptive appearance model since ‘fa’ always yieldsesstal tracking while ‘fm’ fails, the
reasons being that (i) the fixed motion model is unable to attaguick motion present in the
video sequences, and (ii) the appearance changes in the sedpiences, though significant in
some cases, are still within the range of the fixed appeararoziel. However, as seen in the
videos, ‘adp’ produces much smoother tracking results tteandemonstrating the power of the

adaptive appearance model.



IEEE TRANSACTION ON IMAGE PROCESSING., VOL. X, NO. Y, MONTH(D4 22

Frame 685 Frame 695 Frame 800

Fig. 7. The face sequence. Frames 145, 148, and 155 show theditssion. Frames 470 and 517 show the smallest and
largest face observed. Frames 685, 690, and 710 show the seccndion.

VIl. SIMULTANEOUS TRACKING AND RECOGNITION

Visual tracking models the inter-frame appearance diffees and visual recognition models
the appearance difference between video frames and gaihagyes. Simultaneous tracking and
recognition [7] is shown to be an effective approach for hagdtracking and recognition. It
models appearance differences in both tracking and retogim one framework, which actually
improves both tracking and recognition accuracies overafigoaches separating tracking and
recognition as two tasks. The proposed framework in [7] teaageneral and accommodates
various model choices. The more effective the model choares improved performance in
tracking and recognition is expected. Another importasmtides of [7] is the accumulation of
recognition evidence in a probabilistic, recursive, antrpretable manner. In this paper, we

attempt to demonstrate the effectiveness of the proposettinehoices using experiments on a
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Frame 155 Frame 170 Frame 200

Fig. 8. Tracking results on the face sequence using the adaptive péilterl@vithout occlusion analysis.

challenging dataset that has significant pose and illunanatariations.

We assume that there is a gallery §ét, ..., Iy} with each individual possessing one facial
image [,, in frontal view. Heren is treated as a random variable taking value in the sample
spaceNV = {1,2,..., N}. The essence of our framework is posterior probability cotaion, i.e.,
computingp(ny, 6;|Y1..), whose marginal posterior probabilip(n,|Y;.;) solves the recognition
task and whose marginal posterior probabifity,|Y;.;) solves the tracking task.

After a brief review of the time series model for recognitionSec. VII-A, we describe in
Sec. VII-B the three components yielding improvements. dixpental results and discussions

are then presented in Sec. VII-C.

A. Review of recognition model

We briefly present the propagation model for recognitiomststing of the following three
components, namely the motion transition equation, thatityeequation, and the observation
likelihood and define the recognition task as a statistiti@rence problem, which can be solved
using particle filters.

Motion transition equation:We use the same adaptive-velocity motion model as deschnibed
Section IV.
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Identity equation: Denoting the identity variable by, € N = {1,2,..., N}, indexing the
gallery set{Iy, ..., Iy}, and assuming that the identity does not change as time gueceve
have

ng=mny_1, t>1. (38)

In practice, one may assume a small transition probabibtyvben identity variables to increase
the robustness.

Observation likelihood:In [7], our empirical results show that combining contribas (or
scores) from both tracking and recognition in the likelidogelds the best performance in both
tracking and recognition.

To compute the tracking scoye(Y;|0;) which measures the inter-frame appearance changes,
we use the appearance model introduced in Section Il andytizatity defined in (10) as
Pa(Y:|6:)-

To compute the recognition score which measures the appsamhanges between probe
videos and gallery images, we assume that the transformsenaiion is a noise-corrupted

version of some still template in the gallery, i.e.,
Zt == Int —|— Xt7 t Z 1, (39)

where X; is theobservation noisat timet, whose distribution determines the recognition score
pn(Yi|ne, ;). We will physically define this quantity in Sec. VII-B.

To fully exploit the fact that all gallery images are in frahview, we also compute in Sec.
VII-B how likely the patchZ, is in frontal view and denote this score py(Y;|¢;). If the patch is
in frontal view, we accept a recognition score; otherwise,sawmply set the recognition score as
equiprobable among all identities, i.¢/N. The complete likelihoogh(Y;|n,, 6;) is now defined
as

p(Yilne, 0,) o< pa {py pu + (1 —ps) N7} (40)

Particle filter for solving the modelWe assume statistical independence between all noise
variables and prior knowledge on the distributigrié,) andp(n,) (uniform prior in fact). Given
this model, our goal is to compute the posterior probabijlity;|Y:.). It is in fact a probability
mass function (PMF) since; only takes values froo\V' = {1,2,..., N}, as well as a marginal
probability ofp(n,, 6;|Y1..), which is a mixed-type distribution. Therefore, the prablis reduced

to computing the posterior probability.
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Since the model is nonlinear and non-Gaussian in natureg tise no analytic solution.
We invoke a particle filter to provide numerical approxiras to the posterior distribution
p(ng, 0:|Y1.). Also, for this mixed-type distribution, we can greatly irope the computational
load by judiciously utilizing the discrete nature of the ntigy variable as in [7]. We [7] also
theoretically justified the evolving behavior of the recitigm density p(n,|Y7,) under a weak

assumption.

Initialize a sample setSy = {6, w$’ = 1/.Jo)}7°

Jj=1

according to prior distributionp(6y). SetBy,; = 1/N.
Initialize appearance modé;.
Fort=1,2,...
Calculate the MAP estimatd,_1, the adaptive motion shift; by Eq. (21), the noise variancg by Eg. (30),
and particle numbetJ; by Eq. (44).
For j=1,2,...,J:
Draw the sampIeUt(j> for U; with varianceR;.
Construct the sampled?’) by Eq. (29).
Compute the transformed imag@éj).
Forl=1,2,....N
Update the weight usingx\’) = 8,ip(Y:|l,0) = B..p(Z|1,601”) by Eq. (40).
End
End
Normalize the weight usingo’) = a{’) /3" al) and computas{”’ = 3> w’) and B, = 3 wl’).
Update the appearance model;; using Z;.
End

Fig. 9. The visual tracking and recognition algorithm.

B. Model components in detall

As mentioned earlier, the proposed algorithm incorporétese components which improve
our previous approach [7]. We will now examine each of thesmponents in greater detail.
The proposed algorithm is then summarized.

Modeling inter-frame appearance changdster-frame appearance changes are related to the
motion transition model and the appearance model for tnackirhich were explained in Sections
[l and IV.
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Being in frontal view: Since all gallery images are in frontal view, we simply measthe
extent of being frontal by fitting a probabilistic subspaB&) density on the top of the gallery
images [37], [15], assuming that they are i.i.d. samplemftbe frontal face space (FFS). The
method works as follows: a regular PCA is first performed (zeean is assumed by removing
the sample mean). Suppose the eigensystem for the FFS,is;)}L ,, whered is the number
of pixels and\; > ... > \;. Only top s principal components corresponding to topigenvalues
are then kept while the residual components are considerésbaopic. We refer the reader to

the original paper [37] for full details. The PS density istten as follows:

whereq; = el'x for i = 1,...,s is the ! principal component of, err? = ||z||> — X5, ¢? is

the reconstruction error, and= (X% .., \;)/(d — ¢). It is easy to writep(Y;|6;) as follows:

ps(Yi|0:) = Qrrs(Zy). (42)

Modeling appearance changes between probe video frames afetygimages: We adopt
the MAP rule developed in [15] for the recognition scarg(Y;|n,6;). Two subspaces are
constructed to model appearance variations. The intrsepat space (IPS) is meant to cover
all the variations in appearances belonging to the samepexbile the extra-personal space
(EPS) is used to cover all the variations in appearanceselg to different people. More than
one facial image per person is needed to construct the IP8tt Afpm the available gallery,
we crop out four images from the video ensuring no overlaj Wwiimes used in probe videos.
The above PS density estimation method is applied sepatatéhe IPS and the EPS, yielding
two different eigensystems. The recognition scoréY;|n, 6;) is finally computed as, assuming

equal priors on the IPS and the EPS,

Qrprs(Zy — I,)
Qrps(Zy — In,) + Qeps(Zi — 1,,)

Proposed algorithm:We adjust the particle numbef based on the following considerations.

pu(Yilne, 0;) =

(43)

(i) The first issue is same as (31) based on prediction eifpAg proved in [7], the uncertainty
in the identity variable:, is characterized by an entropy measufefor p(n|Y;;) and H; is a

non-increasing function (under one weak assumption). &togly, we increase the number of
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particles by a fixed amounty;, if H; increases; otherwise we dedutt, from .J,. Combining
these two, we have
Ry

Jt = JOR— + me * (—1)i[Ht_1<Hf’_2]}, (44)
0

whereil.] is an indication function.

The proposed particle filtering algorithm for simultanetnasking and recognition is summa-
rized in Fig. 9, whereug) is the weight of the particlén, = 1,6, = 9?)) for the posterior density
p(ng, 04 Y1.); ng) is the weight of the particlé;, = ng) for the posterior density(6,|Y1.,); and
B, is the weight of the particler; = [ for the posterior density(n,|Y;..). Occlusion analysis

can also be included in Fig. 9.

C. Experimental results on visual tracking and recognition

We have applied our algorithm for tracking and recognizingnan faces captured by a
hand-held video camera in office environments . There areub§ests in the database. Fig.
10 lists all the images in the galley set and the top 10 eiggave for the FFS, IPS, and
EPS, respectively. Fig. 11 presents some frames (with itygalesults) in the video sequence
for ‘Subject-2’ featuring quite large pose variations, raate illumination variations, and quick
scale changes ( back and forth toward the end of the sequence)

Tracking is successful for all video sequences and 100%gretion rate is achieved, while
our previous approach [7] failed to track in several videgqussces due to its inability to
handle significant appearance changes caused by posewanthdtion variations. The posterior
probabilitiesp(n,|Y1.;) with n, = 1,2,...N obtained for the ‘Subject-2’ sequence are plotted
in Fig. 12(a). We start from uniform prior for the identity nigble, i.e.,p(ny) = N~! for
no = 1,2,...N. It is very fast, taking about less than 10 frames, to reacival®.9 level for
the posterior probability corresponding to ‘Subject-2'hil all other posterior probabilities
corresponding to other identities approach zero. This imimattributed to the discriminative
power of the MAP recognition score induced by IPS and EPS taglelrhe previous approach
[7] usually takes about 30 frames to reach 0.9 level sincg iotla-personal modeling is adopted.

Fig. 12(b) captures the scale change in the ‘Subject-2’ esecp1
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Fig. 10. Row 1-3: the gallery set with 29 subjects in frontal view. Rows, 4 6: the top 10 eigenvectors for the FFS, IPS,
and EPS, respectively.

VIIl. CONCLUSIONS

We have presented an adaptive method for visual trackinghwkiabilizes the tracker by
embedding deterministic linear prediction into stoclasliffusion. Numerical solutions have
been provided using particle filters with the adaptive obstssn model arising from the adaptive
appearance model, adaptive state transition model, anutiaelaaumber of particles. Occlusion
analysis is also embedded in the particle filter. Our alboritwas tested on several tasks
consisting of tracking visual objects such as car, tank andan faces in realistic scenarios.

We have improved our simultaneous tracking and recogndimproach previously proposed
in [7]. More complex models, namely adaptive appearanceemalaptive-velocity transition
model, and intra- and extra-personal space models, amduted to handle appearance changes
between frames and between frames and gallery images. Ththé the gallery images are in
frontal view is enforced too. Experimental results demi@tstthat the tracker is stable and the

recognition performance is good.
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Frame 690 Frame 750 Frame 800

Fig. 11. Example images in ‘Subject-2’ probe video sequence and ttidrtgaresults.
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LIST OF FIGURHTABLE CAPTIONS

Figure 1 The general particle filter algorithm.

Figure 2 Particle configurations from (top row) the adaptietocity model and (bottom row)
the zero-velocity model.

Figure 3 The proposed visual tracking algorithm with ocidashandling.

Figure 4 The car sequence. Notice the fast scale changenpres¢he video. Column 1:
the tracking results obtained with an adaptive motion maael an adaptive appearance model
(‘fadp’). Column 2: the tracking results obtained with an ad@pmotion model but a fixed
appearance model (‘fa’). In this case, the corner shows#oked region. Column 3: the tracking
results obtained with an adaptive appearance model but @& firagion model (‘fm’).

Figure 5 (a) The scale estimate for the car. (b) The 2-D trajgcof the centroid of the
tracked tank. * means the starting and ending points ahgoints are marked along the
trajectory every 10 frames. (c) The particle numbgws.t obtained when tracking the tank. (d)
The MSE invoked by the ‘adp’ and ‘fa’ algorithms. (e) The scattimate for the face sequence.

Figure 6 Tracking a moving tank in a video acquired by an amwbacamera.

Figure 7 The face sequence. Frames 145, 148, and 155 showsthecfilusion. Frames 470
and 517 show the smallest and largest face observed. Fra8Be§%0, and 710 show the second
occlusion.

Figure 8 Tracking results on the face sequence using thetiaelgparticle filter without
occlusion analysis.

Figure 9 The visual tracking and recognition algorithm.

Figure 10 Row 1-3: the gallery set with 29 subjects in fronialw Rows 4, 5, and 6: the top
10 eigenvectors for the FFS, IPS, and EPS, respectively.

Figure 11 Example images in ‘Subject-2’ probe video seqeend the tracking results.

Figure 12 Results on the ‘Subject-2’ sequence. (a) Postprmbabilities against time for
all identities p(n;|Y1.), n, = 1,2,..., N. The line close to 1 is for the true identity. (b) Scale
estimate against time

Table | Comparison of tracking results obtained by partidters with different configurations.
‘A; size’ means pixel size in the component(s) of the appeararozel. ‘0’ means success in

tracking. ‘X’ means failure in tracking.
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