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Abstract
In this paper, we present a coding framework addressing
the compression of dynamic 3D point clouds which repre-
sent real world objects and which result from a video
acquisition using multiple cameras. The encoding is per-
formed as an off-line process and is not time-critical. The
decoding however, must allow for real-time rendering of
the dynamic 3D point cloud. We introduce a compression
framework which encodes multiple attributes like depth
and color of 3D video fragments into progressive streams.
The reference data structure is aligned on the original
camera input images and thus allows for easy view-depen-
dent decoding. The separate encoding of the object's sil-
houette allows the use of shape-adaptive compression
algorithms. A novel differential coding approach permits
random access in constant time throughout the complete
data set and thus enables true free viewpoint video.

1. Introduction
In the past, many 3D reconstruction methods have been

investigation but no method was presented which is tai-
lored to streaming and compression of free viewpoint
video. In this paper, we present a compression framework
for 3D video fragments which is a dynamic point based
representation tailored for real-time streaming and display
of free viewpoint videos [14]. Our representation general-
izes 2D video pixels towards 3D irregular point samples
and thus we combine the simplicity of conventional 2D
video processing with the power of more complex polygo-
nal representations for free viewpoint video. 3D video
fragments are generic in the sense that they work with any
real-time 3D reconstruction method which extracts depth
from images. Thus the representation is quite complemen-
tary to model-based scene reconstruction methods using
volumetric (e.g. space carving, voxel coloring), polygonal
(e.g. polygonal visual hulls) or image-based (e.g. image-
based visual hulls) scene reconstruction. Therefore, the
framework can be used as a nice abstraction of the 3D
video representation, its streaming and compression from
3D reconstruction.

2. Problem analysis
2.1. Prerequisites

The input data of free viewpoint video systems acquir-
ing real-world objects typically consists of multiple con-
centric video sequences of the same scene. Before

recording, the cameras have been calibrated and for each
camera intrinsic and extrinsic calibration parameters are
available to both encoder and decoder. The multiple 2D
video sequences providing the input data are recorded with
synchronized cameras. Additionally, we have at our dis-
posal for every input frame an image mask, telling which
pixels belong to the object of interest, i.e. are foreground
pixels, and which pixels belong to the background.

After the input images have been processed by a 3D
reconstruction algorithm, which is not specified in this
document, each input frame provides for each foreground
pixel a depth value describing, in combination with the
camera calibration parameters, the geometry of the object,
and a color value. For each foreground pixel, a surface nor-
mal vector and a splat size can be encoded as optional
attributes. In general, it is possible to encode any attributes
describing the visual appearance of an object. Given a spe-
cific rendering scheme or target application, any subset of
the above pixel attributes might be sufficient.

In summary, our compression framework can be
applied to every static or dynamic 3D data set which can
be completely described by a set of concentric 2D views.
In practice, this applies to all acquisition setups for 3D
reconstruction of real world objects, e.g. a 3D scanner pro-
vides only one single image, but our coding framework
still applies. Furthermore, the coding framework can
smoothly be extended to an arbitrary camera setup where
only a few cameras see the object at a time.

2.2. Application domains
Our streaming format for dynamic 3D point clouds

should address the application domains depicted in Figure
2. A high compression ratio is efficient if the 3D point
cloud is transmitted via a low bandwidth network. But a

Figure 1: Input data: a) Concentric camera setup. 
b) Example image from one camera. c) Segmenta-
tion mask of image b).
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high compression ratio is difficult to achieve at a low
decoding complexity. In our opinion, a 3D compression
framework should allow for decoding at a relatively low
complexity, and thus support a wide range of target hard-
ware devices. The problem of low bandwidth transmis-
sions should be addressed by building upon a progressive
representation of the data. In fact, bandwidth and CPU per-
formance are often correlated, e.g. high-end computing
nodes have, in general, access to a broadband network con-
nection and nodes with a low bandwidth network access
have also limited processing power.

2.3. Goals

The goal of our research is compression of free view-
point video. In this paper, we distinguish between con-
strained and unconstrained free viewpoint video.

Definition 1:  Constrained free viewpoint video
After decoding, the point cloud can be rendered
from any possible direction, but either only small
viewpoint changes are allowed during rendering,
or discontinuities in rendering are tolerated in
presence of large viewpoint changes.

Definition 2:  Unconstrained free viewpoint video
After decoding, the point cloud can be rendered
from any possible direction, the viewpoint being a
function of the rendering time and the discontinui-
ties during rendering are minimized.

Examples of spatio-temporal viewpoint trajectories are
depicted in Figure 3. In the constrained case, the trajectory
is constrained to a narrow band. In the unconstrained case,
the trajectory can be arbitrary.

Taking into account that the number of cameras is
potentially large and that real-time decoding is required, it
is not realistic on current hardware to decode all the cam-
eras first, and then to render the scene for a given view-
point. Hence, it is necessary to reduce the set of processed
cameras already during decoding. Thus, view dependent
decoding must be supported by the proposed coding
framework. In the remainder of this section, we define
view dependent decoding.

Consider the following variables:

Note that  is the result after decoding and
 is the result after rendering. In any case, we

have .

Definition 3:  Optimal view dependent decoding
Optimal view dependent decoding is achieved if

.

This implies that the decoder, for a given rendering
frame, only decodes information of the corresponding
recording time frame which becomes visible in the final
rendering. This strong condition can be relaxed using a
weaker formulation:

Definition 4:  View dependent decoding
View dependent decoding minimizes the cardinal
of the complement .

This implies that the decoder, for a given rendering
frame, maximizes the ratio of decoded information of the
corresponding recording time frame which is visible in the
final rendering versus the total amount of decoded infor-
mation for the given rendering instant.

2.4. Playback features
The 3D streaming data format should address the fol-

lowing features:

Figure 2: Application domains for streaming free
viewpoint video.
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Figure 3: Possible viewpoint trajectories for con-
strained and unconstrained free viewpoint video.
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• Multi-resolution: scalability and progressivity with
respect to resolution. This feature can be achieved
using either a progressive encoding of the data, as pro-
posed by the embedded zero-tree wavelet coding algo-
rithm (EZW) [12], progressive JPEG or progressive
sampling of the data, as proposed in [14]. The pro-
gressive encoding approach is more promising than
the progressive sampling.

• Multi-rate: scalability with respect to time, i.e. play-
back of the sequence is possible at a different frame
rate than the recording frame rate. Backward playback
should also be possible.

• View-dependent decoding: In this paper, we address
the problem of encoding data for view-dependent
decoding. The algorithm for deciding which cameras
are required for the view-dependent decoding of a
given rendering frame is similar to the technique
described in [14], i.e., given a viewpoint and the cam-
era calibration data, we compute the contributing cam-
eras and read the data accordingly before decoding.

3. Compression
Compression is achieved by exploiting coherence in the

3D point cloud data. In our compression framework, which
uses the recorded camera images as input data structure,
coherence can be possibly exploited in image space, in
camera space and in the time dimension. 

3.1. Coherence in image space
Similar to standard image compression algorithms, 2D

transforms can be employed to our input data and, thus, the
2D coherence in the data is exploited.

However, we are only interested in a part of the image
which lies within the silhouette. We propose a shape-adap-
tive wavelet encoder, which puts the colors of the relevant
pixels into a linear order by traversing the silhouette scan
line by scan line in alternating directions, see Figure 4. We
then apply a one-dimensional wavelet transform to this lin-
ear list of coefficients using the lifting scheme. The result-
ing wavelet coefficients are lossily encoded up to a desired
bit rate by a one-dimensional zero-tree algorithm and
finally compressed with an arithmetic coder. To allow for a
correct decompression, the silhouette must be stored loss-
lessly along with the compressed data. The compression
performance of the 1D and 2D approaches is analyzed in
Section 6.1.

3.2. Coherence in time
In the case of constrained free viewpoint video, we can

reasonably admit that in most case the sequence is played
back with increasing t and at normal playback speed.
Hence, we can use the information from previous frames
for building the current frame.

For each camera i,  is the decoding function which
returns the contribution to the 3D point cloud of the
respective camera and for the time t. If temporal coherence
is exploited by using the information from previous
frames, the decoding function  thus has the form

 (1)

with  and where  describes the specific con-
tribution of frame t.

Note that all popular 2D video compression algorithms
belong to this class of codecs. This approach is also feasi-
ble for constrained free viewpoint video according to Defi-
nition 1.

In case of unconstrained free viewpoint video, however,
it is more difficult to exploit temporal coherence. The
decoder is supposed to implement a function f, which
returns a 3D point cloud at any time instant  during ren-
dering. This implies a viewpoint  and a mapping func-
tion  which maps the rendering time to the
recording time. A weight function  tells us, given the
viewpoint v, which cameras contribute to the visible part of
the 3D point cloud. In a first approximation, we can
assume that  returns 1 if a camera has a visible contri-
bution and 0 if not.

We get

Assume . If , the decoding of
 requires the decoding of  with  and the con-

dition of view-dependent decoding is violated. Hence,
optimal view-dependent decoding can only be imple-
mented using decoders which can be defined as

(2)

with  independent of t. 
Thus, a decoder supporting unconstrained free view-

point video needs to implement decoding in constant time
for frames addressed in a random order.

3.3. Coherence in camera space
First we discuss the coherence in camera space for the

constrained free viewpoint case where .
If camera coherence is exploited, the decoding function

has the form
 with . (3)

In general, we need the data from two or three cameras
for rendering a 3D point cloud from any arbitrary view-
point. However, unlike in the time dimension, we do not
have a preferential direction in space, and it is not possible

Figure 4: Scan line traversal of pixels inside a sil-
houette.
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to make a reasonable prediction during encoding, from
which viewpoints the point cloud will preferentially be
rendered. Hence, the combination of cameras for exploit-
ing camera space coherence can only be done in an arbi-
trary fashion, or, at best, combining the cameras such that
an optimal compression ratio is achieved. However, this
combination of cameras can again lead to unfortunate con-
figurations, in which several cameras, which are not
directly visible for  need to be decoded.

As in the time dimension, the problem becomes even
more difficult for unconstrained free viewpoint decoding,
if we need to calculate (3) and we additionally have

.
From the precedent analysis, we conclude that tradi-

tional 2D video coding algorithms do not fulfill the
requirements of unconstrained free viewpoint video. In
Section 4, we propose a coding scheme for constrained
free viewpoint video which uses conventional video cod-
ing algorithms and introduce a new coding scheme for
unconstrained free viewpoint video which follows the
guidelines of Equation (2), i.e. allows spatio-temporal ran-
dom access in constant time.

4. Compression framework
The underlying data representation of our free view-

point video format is a dynamic point cloud, in which each
point has a set of attributes. Since the point attributes are
separately stored and compressed, a referencing scheme,
allowing for the unique identification between points and
their attributes is mandatory. Using the camera images as
building elements of the data structure, each point is
uniquely identified by its position in image space and its
camera identifier. Furthermore, looking separately at each
camera image, we are only interested in foreground pixels,
which contribute to the point cloud describing the 3D
object.

Thus, we use the segmentation mask from the camera
images as reference for all subsequent coding schemes. In
order to avoid shifts and wrong associations of attributes
and points, a lossless encoding of the segmentation mask is
required. This lossless segmentation mask must be at the
disposal of all encoder and decoders. However, all pixel
attributes can be encoded by a lossy scheme. Nevertheless,
a lossless or almost lossless decoding should be possible if
all data is available. The stream finally consists of key
frames and delta frames, which rely upon a prediction
based on the closest key frame. The key frame coding and
the prediction is different in case we want to encode con-
strained or unconstrained free viewpoint video.

The overall compression framework is depicted in Fig-
ure 5. From the segmentation masks and the camera cali-
bration data, a geometric reconstruction of the object of
interest is computed. The output of the geometric recon-
struction are 3D positions, surface normal vectors, and
splat sizes. Note that any geometric reconstruction scheme
which is able to deliver these streams from the provided
input data can be used. The data streams are compressed
and, along with the texture information and the segmenta-
tion masks, multiplexed into an embedded, progressive
free viewpoint video stream. The camera calibration data
is encoded as side information. In the following sections,
the specific coders are described in detail. 

Note that all color coding is performed in the 4:1:1
YUV format. The compression performance results as sug-
gested by the MPEG standardization committee should be
generated in YUV color space [5]. However, our frame-
work is also capable of handling texture data in other for-
mats. Furthermore, instead of computing and encoding the
surface normal vectors and the splat sizes during the recon-
struction and encoding process, these attributes can also be
evaluated in real-time during rendering. In that case, no
explicit encoding for surface normals and splat sizes is
necessary.

5. Free viewpoint video coding

5.1. Constrained free viewpoint video
Our compression framework can use existing MPEG

coders in the case of constrained free viewpoint video cod-
ing. The silhouettes are encoded using lossless binary
shape coding [3]. The depth values are quantized as lumi-
nance values and a conventional MPEG-4 video object
codec can be utilized. Surface normal vectors can be pro-
gressively encoded using an octahedron subdivision of the
unit sphere [1]. The splat sizes can simply be quantized to
one byte and the codewords are represented in the gray
scale MPEG video object.

The complete decoding of one constrained free view-
point video frame requires for each reconstruction view
three gray scale MPEG video objects (depth, surface nor-
mal, splat size) and one color video object, i.e. if two
reconstruction views are used a total of six gray scale
video objects and two color video objects.

5.2. Unconstrained free viewpoint video
For unconstrained free viewpoint video we propose a

coding scheme which uses averaged information as key
frames. The principle of average coding is depicted in Fig-
ure 6. In each foreground pixel of a time window, an aver-
age value for each attribute is computed. This information
becomes the key frame, which is, within the respective
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Figure 5: Compression framework.
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time window, independent from the recording time. The
delta frame is simply the difference information of the
original frame and the respective key frame, It is true that
for every window of N frames which use the same key
frame, we need to encode N+1 image frames. However, we
can use pretty high values for N and thus, the additional
cost of coding the key frame is distributed over a large
number of delta frames.

The streams can thus be decomposed into a base layer
which contains the averaged key frames, and an enhance-
ment layer composed by the delta frames which allow to
decode the complete information for every frame, see Fig-
ure 7. It appears that the key frames are only independent
of the rendering time inside each window. But the win-
dows can cover a large number of frames without limiting
the navigability of the stream, as it is the case with coders
that follow the scheme of Equation (1). 

Figure 10 illustrates the principle of average coding
using a window of texture data of one single camera.

The silhouettes are again encoded using lossless
MPEG-4 binary shape coding [3]. All point attributes are
encoded using the average coding scheme: the key frame
averages the attributes of the window; the delta frame con-
tains the difference image with respect to the key frame.

The depth values are encoded using the shape-adaptive
1D wavelet approach described in Section 3.1 and the col-
ors are encoded using the embedded zero-tree wavelet
algorithm for image compression [12].

If we assume large windows, the decoding of the key
frames can be neglected and the complexity is about the
same than in the constrained free viewpoint case. If surface
normals and splats are determined during rendering, we
need for each reconstruction camera one binary shape
image, one gray scale image and one color image.

5.3. Multiplexing
Since all attributes are encoded independently and pro-

gressively, a stream satisfying a given target bit rate can be
obtained by multiplexing the individual attribute bit

streams into one bit stream for transfer. Appropriate contri-
butions of the single attribute bit streams are determined
according to desired rate-distortion characteristics. 

For example, a bit stream of 300 kbps may contain
30 kbps of shape information, 60 kbps of position informa-
tion, 120 kbps of color information, 45 kbps of surface
normal information and 45 kbps of splat size information.

5.4. Extension to full dynamic 3D scenes
The encoders, described so far for video objects, can

also be used to encode entire dynamic scenes. Distinct
objects in the scene can be encoded in different layers.
Static objects are described by a single key frame. A scene
graph, which is stored as side information, describes the
spatial relations between the different layers. View depen-
dent decoding is again enabled by decoding only those lay-
ers which are visible from the current arbitrary viewpoint. 

6. Preliminary results

6.1. Wavelet filters for depth image compression
We investigated the rate-distortion function of the EZW

image compression algorithm for different wavelet filters
applied to a depth image. The results are presented in Fig-
ure 8 and Figure 9. As input we used a 512x512 depth
image generated from a synthetic 3D human body. The bit
rate is given in bits per surfel, where we consider a fore-
ground pixel in the depth image as surfel. Our example
depth image contained 40k surfels.

6.2. Bit rates for unconstrained free viewpoint 
video

We compressed an MPEG test data sequence with our
unconstrained free viewpoint video codec [5]. The test
sequence consists of input data from 25 different camera
positions, each with a resolution of 320x240 pixels. We
assume a frame rate of 25 frames per second. The average
key frame covers a window of 200 frames which corre-
sponds to a time of 8 seconds. Only disparity and colors
are coded, normals and splat radii are estimated on the fly
during rendering. For view-dependent decoding and ren-

Figure 6: Principle of average coding

Figure 7: Decomposition of a stream into base and
enhancement layers
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dering the three cameras nearest to the virtual viewpoint
are chosen. The resulting data stream consists of approxi-
mately 8000 surfels per frame. We compressed it with sev-
eral example bit rates specified in Table 1. To further
improve the compression performance we use downscaled
depth images which are re-expanded to full resolution dur-
ing reconstruction. The silhouette images have to be com-
pressed lossless which produces an additional amount of
data of 0.3 bits per surfel. Snapshots from the respective
sequences are shown in Figure 11.

7. Related work
In [14], we propose a point-based system for real-time

3D reconstruction, streaming and rendering which does
not make any assumptions about the shape of the recon-
structed object. Our approach uses point samples as a
straightforward generalization of 2D video pixels into 3D
space. Thus a point sample holds, additionally to its color,
a number of geometrical attributes and a one-to-one rela-
tion between 3D points and foreground pixels in the
respective 2D video images is guaranteed.

For shape coding, we rely on lossless coding techniques
for binary images [3, 7]. The compression is based on a
context-sensitive adaptive binary arithmetic coder.

In our free viewpoint video framework, images are
compressed using a wavelet decomposition followed by
zero-tree coding of the respective coefficients [11, 12].

Finally, an arithmetic entropy coding is applied [8]. Alter-
natively, MPEG-4 video object coding, based on shape
adaptive discrete cosine transform coding, can be used [6].

Several coding techniques for large but static point rep-
resentations have been proposed in the literature. Rusink-
iewicz and Levoy presented Streaming QSplat [10], a
view-dependent progressive transmission technique for a
multi-resolution rendering system, which is based on a
hierarchical bounding sphere data structure and splat ren-
dering [9]. In [1], Botsch et al. use an octree data structure
for storing point sampled geometry and show that typical
data sets can be encoded with less than 5 bits per point for
coding tree connectivity and geometry information.
Including surface normal and color attributes, the authors
report memory requirements between 8 and 13 bit per
point. A similar compression performance is achieved by a
progressive encoding scheme for isosurfaces using an
adaptive octree and fine level placement of surface sam-
ples [4].

Briceno et al. propose to reorganize the data from
dynamic 3D objects into 2D images [2]. This representa-
tion allows to deploy video compression techniques for
coding animated meshes. This approach, however, fails for
the case of unconstrained free viewpoint video. 

Vedula et al. developed a free viewpoint video system
based on the computation of a 3D scene flow and spatio-
temporal view interpolation [13]. However, the coding of
the 3D scene flow representation is not addressed.

8. Conclusions
This paper introduces a compression framework for

free viewpoint video using a point-based data representa-
tion. The deployment of a novel average coding scheme
enables for an unconstrained spatio-temporal navigation
throughout the 3D video stream. All data is progressively
encoded and hence a 3D video stream can be generated for
different target bit rates.

In the future, additional components and investigations
are required. The framework is independent of the 3D
reconstruction method and we currently use a variant of
the image-based visual hulls method, but other reconstruc-
tion algorithms should be investigated. Furthermore, the
framework is independent of the actual attribute codecs,
the only requirements on the codecs is the support for pro-
gressive decoding capabilities. The specific codecs also
need to be investigated in detail. Finally, an algorithm opti-
mizing the window length for average coding should be
developed.
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Figure 10: Average coding illustrated with a texture example: a) Key frame of 12kB. b) Masked key frame
(PSNR=29.3dB). c) Key frame plus 100B of delta frame (PSNR=31.4dB). d) Key frame plus 300B of delta frame
(PSNR=33.7dB). e) Key frame plus 4.3kB of delta frame (PSNR=42.8dB) f) Original frame.

Figure 11: Example images at various bit rates from an MPEG test sequence. The virtual viewpoint lies in between
three reconstruction cameras.

(a) (b) (c) (d) (e) (f)
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