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Abstract— In time hopping impulse radio, Nf pulses of dura-
tion Tc are transmitted for each symbol. This gives rise to two
types of processing gain: (i) pulse combining gain, which is a
factor Nf , and (ii) pulse spreading gain, which isNc = Tf/Tc,
where Tf is the mean interval between two subsequent pulses.
This paper investigates the tradeoff between these two types
of processing gain with and without random polarity codes in
the presence of timing jitters. Bit error rate expressions are
derived for both coded and uncoded systems and are used as
the criterion to choose optimalNf and Nc values. The effect of
timing jitters and multiple access interference on the selection
of optimal system parameters are explained through theoretical
analysis. Simulation studies support the theoretical results.

I. I NTRODUCTION

Recently, communication systems that employ ultra-
wideband (UWB) signals have drawn considerable attention.
UWB signals occupy a bandwidth larger than 500MHz and
can make use of the existing spectrum. Recent Federal Com-
munications Commission (FCC) rulings [4, 5] specify the
regulations for UWB communication systems in the US.
Similar rulings are expected in the near future for Europe and
Japan.

Commonly, impulse radio (IR) systems, which transmit
very short pulses with a low duty cycle, are employed to
implement UWB systems [6]. In an IR system, a train of pulses
is sent and information is usually conveyed by the position
or the polarity of the pulses, which correspond to Pulse
Position Modulation (PPM) and Binary Phase Shift Keying
(BPSK), respectively. Also, in order to prevent catastrophic
collisions among different users and thus provide robustness
against multiple access interference, each information symbol
is represented not by one pulse but by a sequence of pulses and
the location of the pulses within the sequence is determined
by a pseudo-random time-hopping (TH) sequence [6]. For
example, the first signal in Figure 1 is an uncoded3 BPSK-
modulated TH-IR signal where3 pulses are sent in order to
represent one bit (+1 in this case) and the pulse positions are
determined by the TH sequence{2, 5, 3}.

The number of pulses that are sent for each information
symbol is denoted byNf . This first type of processing gain
is called the pulse combining gain, which is the pulse rate
of the system. The second type of processing gainNc is the

1This research is supported in part by the National Science Foundation
under grant CCR-99-79361, and in part by the New Jersey Center for Wireless
Telecommunications.

2Also at the Department of Electroscience, Lund University, Lund, Sweden.
3In coded systems, the polarity of all pulses are determined by a random

polarity code sequence.

Fig. 1. Two different cases for an uncoded BPSK-modulated TH-IR system
when N = 24. For the first case,Nc = 8, Nf = 3, pulse energy isE/3
and for the second caseNc = 4, Nf = 6, pulse energy isE/6.

pulse spreading gain and is defined as the ratio of average
time between the two consecutive transmissions and the actual
transmission time, that is,Nc = Tf/Tc. The total processing
gain is defined asN = NcNf and assumed to be constant and
large [2]. The aim of this paper is to investigate the trade-off
between the two types of processing gain,Nc andNf , and to
calculate the optimalNc (Nf ) value such that bit error rate
of the system is minimized4. In other words, the problem is
to decide whether or not sending more pulses each with less
energy is more desirable in terms of bit error rate performances
than sending fewer pulses each with more energy (Figure 1).

This problem is originally investigated in [2]. Also [3]
analyzed the problem from an information theoretic point of
view for the single-user case. In [2], it is concluded that
in multiuser flat fading channels, the system performance is
independent of the pulse rate for a coded system and it is in
favor of small pulse rates for an uncoded system. However, no
timing jitters are considered in that work. As we will see in this
paper, timing jitters have an effect on the trade-off between
the processing gains and they modify the dependency of the
bit error rate expressions to processing gain parameters. In this
paper, the trade-off between two types of processing gain is
investigated in the presence of timing jitters and expressions
for the bit error rate are derived for both coded and uncoded
systems.

The remainder of the paper is organized as follows. Section
II describes the transmitted signal model and components of
the received signal at the output of a Matched Filter (MF)
receiver. The BER expressions for coded and uncoded systems
are derived in Sections III and IV, respectively and the trade-

4FCC also imposes restriction on peak-to-average ratio (PAR), which is not
considered in this paper.



off between the processing gains is investigated. Section V
presents some simulation studies and numerical examples and
finally Section VI concludes the paper.

II. SIGNAL MODEL

Consider a binary phase-shift keyed random time-hopping
impulse-radio (TH-IR) system where the transmitted signal
from user k in an Nu-user setting is represented by the
following model:

s
(k)
tx (t) =

√
Ek

Nf

∞∑

j=−∞
d
(k)
j b

(k)
bj/Nfcwtx(t−jTf−c

(k)
j Tc+ε

(k)
j ),

(1)
wherewtx is the transmitted unit-energy pulse,Ek is the bit
energy of userk, ε

(k)
j is the timing jitter atjth pulse of the

kth user,Tf is the average pulse repetition time (also called
the “frame” time),Nf is the number of pulses representing
one information symbol, which is called the pulse rate of the
system, andb(k)

bj/Nfc ∈ {+1,−1} is the information symbol
transmitted by userk. In order to allow the channel to be
exploited by many users and avoid catastrophic collisions, a
pseudo-random sequence{c(k)

j }, wherec
(k)
j ∈ {0, 1, ..., Nc −

1}, is assigned to each user. This sequence is called time
hopping sequence and provides an additional time shift of
c
(k)
j Tc seconds to thejth pulse of thekth user whereTc

is the chip interval and is chosen to satisfyTc ≤ Tf/Nc in
order to prevent the pulses from overlapping. Without loss of
generality,Tf = NcTc is assumed throughout the paper.

Two different IR systems will be considered depending on
d
(k)
j . The system is called “uncoded” ifd(k)

j = 1, ∀k, j,

and it is called “coded” ifd(k)
j are binary random variables

taking values±1 with equal probability and are independent
for (k, j) 6= (l, i).

N = NcNf is defined to be the total processing gain.
Assuming a large and constantN value, the aim is to obtain
the optimalNc (Nf ) value that minimizes the bit error rate
(BER) of the system.

The received signal over a flat fading channel (for multipath
channels, see [1]) in anNu-user system can be expressed as

r(t) =
Nu∑

k=1

√
Ek

Nf

∞∑

j=−∞
d
(k)
j b

(k)
bj/Nfc

× wrx(t− jTf − c
(k)
j Tc + ε

(k)
j ) + σnn(t), (2)

wherewrx is the received UWB pulse andn(t) is a zero mean
white Gaussian noise with unit spectral density.

We assume that all users are synchronized5 and jitters are
independent identically distributed (i.i.d.) for each user. That
is, ε

(k)
j for j = . . . ,−1, 0, 1, . . . form an i.i.d. sequence. Also

the jitters are assumed to be small compared to the chip
interval Tc.

Considering a Matched Filter (MF) receiver, the template
signal at the receiver can be expressed as follows:

s
(1)
temp(t) =

1√
Nf

(i+1)Nf−1∑

j=iNf

d
(1)
j wrx(t− jTf − c

(1)
j Tc), (3)

5Symbol synchronization among different users does not need not be
assumed for coded systems. Chip synchronization is sufficient in that case.

where, without loss of generality, user 1 is assumed to be the
user of interest. Also note that no timing jitters are considered
for the template signal since the jitter models in the received
signal are assumed to account for those jitters as well.

From (2) and (3), the MF output for user 1 can be expressed
as follows:

y1 =
√

E1

Nf
b
(1)
i

(i+1)Nf−1∑

j=iNf

R(ε(1)j ) + a + n, (4)

where the first term is the signal part of the output with
R(x) =

∫∞
−∞ wrx(t)wrx(t − x)dt being the symmetric au-

tocorrelation function of the UWB pulse,a is the multiple
access interference (MAI) due to other users andn is the
output noise,n ∼ N (0, σ2

n).
The MAI term can be expressed as sum of interference

terms from each user, that is,a =
∑Nu

k=2 a(k), where each
interference term is in turn the summation of interference due
to one pulse of the template signal:

a(k) =
√

Ek

Nf

(i+1)Nf−1∑

l=iNf

a
(k)
l , (5)

where

a
(k)
l = d

(1)
l

∫
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(1)
l Tc)
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j=−∞
d
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(k)
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As can be seen from (6),a(k)
l denotes the interference from

userk to the lth pulse of the template signal.

Let p
(1)
l denote the position of thelth pulse of the template

signal in thelth frame (p(1)
l = 1, ..., Nc) for l = iNf , ..., (i +

1)Nf−1. Similarly, writep
(k)
l for the position of thelth pulse

of the received signal from userk. Then,a(k)
l can be expressed

as follows forp(1)
l = 2, ..., Nc − 1:

a
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for l = iNf , ..., (i + 1)Nf − 1, where IA is the indicator
function taking value1 in set A and 0 outside. In obtaining
(7), the following observation is employed: There occurs
interference from userk to thelth pulse of the template signal
if userk has itslth pulse at the same position as thelth pulse
of the template signal or it has itslth pulse at a neighboring
position tolth pulse of the template signal and there is a partial
overlap due to the effect of timing jitter.

For p
(1)
l = 1, we also consider the interference from the

previous frame of the signal received from userk:
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for l = iNf + 1, ..., (i + 1)Nf − 1. Note that forl = iNf , we
just need to replaceb(k)

i in the third term byb(k)
i−1 since the

previous bit will be in effect in that case.
Similarly, for p
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l = Nc,
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for l = iNf , ..., (i + 1)Nf − 2. For l = (i + 1)Nf − 1, b
(k)
i in

the third term is replaced byb(k)
i+1.

Our aim is to obtain the probability distribution ofa(k) =√
Ek

Nf

∑(i+1)Nf−1
l=iNf

a
(k)
l . We will consider coded and uncoded

systems separately at this point.

III. C ODED SYSTEMS

For coded systems, the following lemma approximates the
probability distribution of the MAI from userk, a(k):

Lemma 3.1: Assume thatN −→ ∞ and Nf

Nc
−→ c > 0.

Then, the MAI from userk, a(k), is asymptotically normally
distributed as

a(k) ∼ N (0 , Ekγ2/N), (10)

whereγ2 = E{R2(ε(k))}+ E{R2(Tc − |ε(k)|)}6.
Proof See Appendix A.
When probability distributions of the jitters are i.i.d. for all

users, the MAI terma is distributed as follows:

a ∼ N
(

0 ,
γ2

N

Nu∑

k=2

Ek

)
. (11)

Assuming interferers with equal energy, for simplicity, we
have a ∼ N (0 , (Nu − 1)Eγ2/N). Then, using (4), the bit
error rate (BER) conditioned on the timing jitters of user1
can be expressed as follows:

Pe|ε(1) = Q
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√
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whereε(1) = [ε(1)iNf
. . . ε

(1)
(i+1)Nf−1].

For large value ofNf , it follows from the Central Limit
Theorem (CLT) that 1

Nf

∑(i+1)Nf−1
j=iNf

R(ε(1)j ) is approximately
Gaussian. That is,

1
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R(ε(1)j ) ∼ N (µ, σ2/Nf ), (13)

whereµ = E{R(ε(1)j )} and σ2 = Var{R(ε(1)j )}. Then, using

the relation E{Q(X)} = Q
(

µ̂√
1+σ̂2

)
for X ∼ N (µ̂, σ̂2), the

unconditional BER can be expressed as follows:

Pe = Q




√
E1µ√
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N Nc + (Nu − 1)Eγ2/N + σ2
n


 . (14)

6Note that the frame index is removed from the jitter for simplicity since
jitters of a user at different frames are i.i.d.

From the last expression, it is observed that BER increases
as Nc increases. In other words, BER is smaller for larger
pulse rateNf . It is seen from Lemma 3.1 that MAI for
a coded system is asymptotically independent of processing
gains. Therefore, the second term in the denominator of (14),
which is the term due to MAI, does not depend onNc (Nf ).
The only term that depends on the processing gain is the first
term in the denominator, which reflects the effect of timing
jitters. This effect is mitigated by sending more pulses per
bit (largeNf ) as can be observed from (13). Therefore, for a
coded system, keepingNf large helps to reduce BER. Also
note that in the absence of timing jitters, (14) reduces to

Pe = Q

( √
E1√

(Nu−1)E/N+σ2
n

)
, in which case there is no effect

of processing gain parameters to BER performance, as stated
in [2].

IV. U NCODED SYSTEMS

For uncoded systems, the following lemma approximates
the probability distribution of the MAI from userk, a(k):

Lemma 4.1: Assume thatN −→ ∞ and Nf

Nc
−→ c > 0.

Then, the MAI from userk, a(k), given the information bit
b
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i , is approximately distributed as
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where

γ1 = E{R(ε(k))}+ E{R(Tc − |ε(k)|)},
γ2 = E{R2(ε(k))}+ E{R2(Tc − |ε(k)|)},
β1 = 2E{R(Tc − |ε(k)|)R(ε(k))} − 2(E{R(Tc − |ε(k)|)})2

+ 4
∫ 0
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R(Tc + ε(k))p(ε(k))dε(k)

×
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R(Tc − ε(k))p(ε(k))dε(k),

β2 = 2(E{R(Tc − |ε(k)|)})2. (16)

Proof See Appendix B.
Note that for systems with largeNc, the MAI

in the uncoded case given the information symbol
b
(k)
i can be approximately expressed asa(k)|b(k)

i ∼
N

(
b
(k)
i γ1

√
Ek/Nc , Ek

N (γ2 − γ2
1/Nc)

)
.

First consider a two-user system. For equiprobable informa-
tion symbols±1, the BER conditioned on timing jitters of the
first user can be shown to be

Pe|ε(1) ≈
1
2
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Then, for largeNf values, we can again invoke the CLT

and obtain 1
Nf

∑(i+1)Nf−1
j=iNf

R(ε(1)j ) ∼ N (µ, σ2/Nf ) with µ =

E{R(ε(1)j )} and σ2 = Var{R(ε(1)j )}. Then, the unconditional
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BER can be similarly obtained as

Pe ≈ 1
2
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For the multiuser case, assume that all interfering users
have the same energyE and probability distributions of the
jitters are i.i.d. for all of them. Then, the total MAI can be
approximated by a zero mean Gaussian random variable with
variance(Nu − 1)

[
E

N2
c
γ2
1 + E

N (γ2 − γ2
1/Nc)

]
for sufficiently

large number of users,Nu.
Then, after similar manipulations, BER can be expressed as
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NNc
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+ σ2
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 .

(19)
Considering (19), it is seen that for relatively smallNc

values, the second term in the denominator, which is the
term due to MAI, becomes large and causes an increase in
the BER. Similarly, whenNc is large, the first term in the
denominator becomes significant and the BER becomes high
again. Therefore, we expect to have an optimalNc value.
Intuitively, for smallNc values, the number of pulses per bit,
Nf , is large. Therefore, we have high BER due to large amount
of MAI. As Nc becomes large, MAI becomes more negligible.
However, makingNc very large again causes an increase in
BER sinceNf becomes small in that case and effect of timing
jitter becomes more significant. The optimalNc (Nf ) value
can be approximated by equating the first derivative of (19)
with respect toNc to zero.

V. SIMULATION RESULTS

In this section, bit error rate (BER) performances of coded
and uncoded systems are simulated for different values of
processing gains and the results are compared to the theoretical
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results. The UWB pulse7 and the normalized autocorrelation
function used in the simulations are as follows [7]:

w(t) =
(

1− 4πt2

τ2

)
e−2πt2/τ2

, (20)

R(∆t) =
[
1− 4π(

∆t

τ
)2 +

4π2

3
(
∆t

τ
)4

]
e−π(∆t

τ )2 ,(21)

whereτ = 0.125ns is used.
The timing jitter is modelled byU [−25ps, 25ps] andTc is

chosen to be0.25ns. The total processing gainN = NcNf is
taken to be630. Also all 10 users (Nu = 10) are assumed to
be sending unit energy per bit (Ek = 1 ∀k) andσ2

n = 0.1.
Figure 3 shows the BER of the coded and the uncoded

system for differentNf values. It is seen that theoretical values
match quite closely with the simulation results, especially
when Nf gets larger, since the Gaussian approximation gets
better asNf increases. For the coded system, the BER
decreases asNf increases. Since the MAI is asymptotically
independent ofNf as shown in Lemma 3.1, the only effect
to consider will be timing jitters. Since the effect of timing
jitter is reduced for largeNf , the plots for coded system show
a decrease in BER asNf increases. For the uncoded system,
there is an optimal value of the processing gain that minimizes
the BER of the system. In this case, there are both the effect
of timing jitters and the effect of MAI. The effect of timing
jitters is mitigated using largeNf while that of MAI is reduced
using smallNf . The optimal value of the processing gains can
be approximately calculated using (19).

VI. CONCLUSION

The trade-off between two types of processing gain is
investigated in the presence of timing jitters. It is concluded
that in a flat fading channel sending more pulses per bit
decreases the bit error rate in a coded system since MAI is
independent of processing gains and effect of timing jitters is
reduced by sending more pulses. In an uncoded system, there
is a trade-off betweenNc andNf , which reflects the effects of
timing jitter and MAI. Optimal processing gains can be found
by using an approximate closed form expression for the bit
error rate. Future work will extend the results to frequency
selective channels.

7wrx(t) = w(t)/
p

Ep with Ep =
R∞
−∞ w2(t)dt is used as the received

UWB pulse with unit energy.
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APPENDIX

A. Proof of Lemma 3.1

Considera(k)
l given by equations (7)-(9). In the coded case,

it is easy to see that E{a(k)
l } = 0 due to the independence

of polarity codes for different frame indices. To calculate
the variance, the relation E{(a(k)

l )2} = E{E{(a(k)
l )2|ε(k)}}

is employed. From equations (7)-(9), we have
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[R2(ε(k)
l )

+R2(Tc + ε
(k)
l )I{ε(k)

l <0} + R2(Tc − ε
(k)
l−1)I{ε(k)

l−1>0}]

+
1

N2
c

[R2(ε(k)
l ) + R2(Tc − ε

(k)
l )I{ε(k)

l >0}

+R2(Tc + ε
(k)
l+1)I{ε(k)

l+1<0}],

where independence of the polarity codes for different frame
indices and the fact that probability that a pulse is in a given
chip in the frame is1/Nc are employed.

Then, it is straightforward to show that

E{(a(k)
l )2} = γ2/Nc, (22)

whereγ2 = E{R2(ε(k)
l )}+ E{R2(Tc − |ε(k)

l |)}.
Note thata(k)

iNf
, ..., a

(k)
(i+1)Nf−1 are identically distributed but

not independent. However, they form a 1-dependent sequence
[8]. Therefore, for largeNf values, sum of them converge
to a zero mean Gaussian random variable with variance
Nf [E{(a(k)

iNf
)2} + 2E{a(k)

iNf
a
(k)
iNf+1}] [8]. It is easy to show

that the cross-correlation term is zero using the independence
of polarity codes for different indices. Hence,

(i+1)Nf−1∑

l=iNf

a
(k)
l ∼ N (0 , γ2Nf/Nc). (23)

Then, using (5), we geta(k) ∼ N (0 , Ekγ2/N).

B. Proof of Lemma 4.1

Similar to the proof of the previous lemma, we want to
approximate the distribution ofa(k) =

√
Ek

Nf

∑(i+1)Nf−1
l=iNf

a
(k)
l

given the information bitb(k)
i by a Gaussian random variable.

However, in this case,a(k)
iNf

, ..., a
(k)
(i+1)Nf−1 are not identically

distributed due to the possible small difference for the edge
valuesa

(k)
iNf

anda
(k)
(i+1)Nf−1 as stated after equations (8) and

(9). However, those differences can be neglected assuming
large Nc and Nf values. Then,a(k)

iNf
, ..., a

(k)
(i+1)Nf−1 can be

considered as identically distributed. The mean value can be
calculated using E{a(k)

l |b(k)
i } = E{E{a(k)

l |ε(k), b
(k)
i }}. From

equations (7)-(9), we get

E{a(k)
l |ε(k), b

(k)
i } = [R(ε(k)

l ) + R(Tc − ε
(k)
l ) I{ε(k)

l >0}

+R(Tc + ε
(k)
l ) I{ε(k)

l <0}]
Nc − 2

N2
c

b
(k)
i + [R(ε(k)

l )

+R(Tc + ε
(k)
l )I{ε(k)

l <0} + R(Tc − ε
(k)
l−1)I{ε(k)

l−1>0}]
b
(k)
i

N2
c

+[R(ε(k)
l ) + R(Tc − ε

(k)
l )I{ε(k)

l >0}

+R(Tc + ε
(k)
l+1)I{ε(k)

l+1<0}]
b
(k)
i

N2
c

. (24)

Then, taking expectation with respect to timing jitters, we
get

E{a(k)
l |b(k)

i } = b
(k)
i γ1/Nc, (25)

whereγ1 = E{R(ε(k)
l )}+ E{R(Tc − |ε(k)

l |)}.
By similar calculations, it can be shown that

E{(a(k)
l )2|b(k)

i } =
γ2

Nc
+

2
N3

c

E{R(ε(k))}E{R(Tc − |ε(k)|)}

+
4

N3
c

Z 0

−∞
R(Tc + ε(k))p(ε(k))dε(k)

Z ∞

0

R(Tc− ε(k))p(ε(k))dε(k),

(26)
wherep(ε(k)) is the probability density function of i.i.d. timing
jitters for userk andγ2 = E{R2(ε(k)

l )}+ E{R2(Tc−|ε(k)
l |)}.

Note that frame indices are omitted in the last equation since
the results do not depend on the frame index.

The cross-correlations between consecutive values of the 1-
dependent sequencea(k)

iNf
, ..., a

(k)
(i+1)Nf−1 can be obtained as

E{a(k)
l a

(k)
l+1|b(k)

i } = γ2
1/N2

c −
1

N3
c

γ1E{R(Tc − |ε(k)|)}

+
1

N3
c

E{R(Tc − |ε(k)|)R(ε(k))}+
1

N4
c

(E{R(Tc − |ε(k)|)})2.

Then, invoking the theorem for 1-dependent sequences
[8], the sum of interferences due to each pulse of the
template,

∑(i+1)Nf−1
l=iNf

a
(k)
l |b(k)

i , is distributed as a Gaussian

random variable with meanNf E{a(k)
l |b(k)

i } and variance

Nf

(
Var{a(k)

l |b(k)
i }+ 2[E{a(k)

l a
(k)
l+1|b(k)

i } − (E{a(k)
l |b(k)

i })2]
)

,
which can be expressed as

N
(

b
(k)
i Nfγ1

Nc
, Nf (

γ2

Nc
− γ2

1

N2
c

+
β1

N3
c

+
β2

N4
c

)

)
, (27)

whereγ1, γ2, β1 andβ2 are as in (16).
Then, using (27) in (5), (15) is obtained.
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