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Abstract

The best codes of short or intermediate blocklength that have so far been discovered are usually
defined in ways that do not immediately suggest a sparse parity check matrix representation. For
this reason, large classes of classical textbook codes, which would give excellent performance
under optimal decoding, have been mostly ignored as candidates for the belief propagation (BP)
decoding algorithm. A notable exception are the one-step majority logic decodable codes, which
have been shown to have excellent error-correcting performance when decoded using BP. We
report here on a method for generating sparse generalized parity check (GPC) matrix represen-
tations of other classical codes.
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I. INTRODUCTION

The best codes of short or intermediate blocklength that
have so far been discovered are usually defined in ways that
do not immediately suggest a sparse parity check matrix rep-
resentation. For this reason, large classes of classical text-
book codes, which would give excellent performance under
optimal decoding, have been mostly ignored as candidates for
the belief propagation (BP) decoding algorithm. A notable
exception are the one-step majority logic decodable codes,
which have been shown to have excellent error-correcting per-
formance when decoded using BP [1]. We report here on a
method for generating sparse generalized parity check (GPC)
matrix representations of other classical codes.

II. IMPROVING GPC MATRICES

An M by N generalized parity check (GPC) matrix repre-
sentation [2] of an (n,k) binary linear block code will have
N > n columns, and M > N — k rows, where the M rows
span an N — k dimensional sub-space.

The BP algorithm seems to work best on GPC matrices
that have the following characteristics:

1. The number of ones in each row is small.
2. The number of ones in each column is large.

3. For all pairs of rows of the matrix, the number of
columns that have a one in both rows is small; ideally
ZEro Or one.

We developed an algorithm that improves GPC matrices in
all three of these characteristics; but the new GPC matrices
also have additional auxiliary bits, and because there is no
evidence from the channel to determine the value of these
bits, they may cause performance to deteriorate on channels
other than the binary erasure channel (BEC).

Given an M by N input GPC matrix H, our algorithm
outputs an M’ by N’ GPC matrix H’. The basic idea behind
the algorithm, which is described in detail elsewhere [3], is to
re-write constraints involving large numbers of bits by using
auxiliary bits that encode the parity of sets of bits. Using
this “divide-and-conquer” approach, we try to minimize the
number of bits involved in each constraint by re-writing the
constraints in terms of sets of bits that are as large as possible.
We also try to use as many redundant constraints as possible.

I1I. RESULTS FOR A EUCLIDEAN GEOMETRY CODE

We present some empirical results obtained applying our
method on a (n = 255,k = 127) Euclidean geometry (EG)
code. In the notation of [4], the code we studied has param-
eters, m = 4, s = 2, and g = 1. In the geometric interpre-
tation of this code, each bit corresponds to a point, there are
21 % 255 = 5355 lines each consisting of four points, and there
are also 5355 planes consisting of four parallel lines. This code
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can be represented by a redundant parity check matrix H with
M = 5355 and N = 255, where each row has weight 16.

Applying our algorithm to this input GPC matrix H, we
obtain an output GPC matrix H' with M’ = 32130 and
N’ = 5610. The weights of the rows are either four or five.
Results using BP decoding with these matrices on the BEC
are shown in Figure 1, where we have also shown the per-
formance of BP decoding of regular (3,6) Gallager codes and
maximum likelihood (ML) decoding of random linear codes
with parameters (n = 256, k = 128) [5].
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Figure 1: Performance of EG (255,127) code on the BEC.

The results using BP decoding with H are already quite
good-much better than BP decoding of Gallager codes. This
is a consequence of using highly redundant parity check matri-
ces with 5355 rows instead of just 128 rows. The performance
using H' was even better, though still clearly distinguishable
from ML decoding.
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