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Abstract

We present a novel solution to the inter-camera color calibration problem, which is very impor-
tant for multi-camera systems. We propose a distance metric and a model function to evaluate the
inter-camera radiometric properties. Instead of depending on the shape assumptions of bright-
ness transfer function to find separate radiometric responses, we derive a non-parametric function
to model color distortion for pair-wise camera combinations. Our method is based on correlation
matrix analysis and dynamic programming. The correlation matrix is computed from three 1-D
color histograms, and the model function is obtained from a minimum cost path traced within
the matrix. The model function enables accurate compensation of color mismatches, which can-
not be done with conventional distance metrics. Furthermore, we show that our metric can be
reduced to other commonly used metrics with suitable simplification. Our simulations prove the
effectiveness of the proposed method even for severe color distortions.
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ABSTRACT

We present a novel solution to the inter-camera color calibration
problem, which is very important for multi-camera systems. We
propose a distance metric and a model function to evaluate the
inter-camera radiometric properties. Instead of depending on the
shape assumptions of brightness transfer function to find sepa-
rate radiometric responses, we derive a non-parametric function
to model color distortion for pair-wise camera combinations. Our
method is based on correlation matrix analysis and dynamic pro-
gramming. The correlation matrix is computed from three 1-D
color histograms, and the model function is obtained from a min-
imum cost path traced within the matrix. The model function en-
ables accurate compensation of color mismatches, which cannot be
done with conventional distance metrics. Furthermore, we show
that our metric can be reduced to other commonly used metrics
with suitable simplification. Our simulations prove the effective-
ness of the proposed method even for severe color distortions.

1. INTRODUCTION

A major problem of multi-camera systems is the color calibration
of cameras. Such a system may contain identical cameras that
are operating under various lighting conditions, (e.g. indoor cam-
eras under fluorescent/neodmyium lamps or outdoor cameras in
bright/overcast daylight), or different cameras that have dissimilar
radiometric characteristics. Even identical cameras, which have
the same optical properties and are working under the same light-
ing conditions, may not match in their color responses. Images of
the same object acquired under these variants show color dissim-
ilarities. As a result, the correspondence, recognition, and other
related computer vision tasks become more challenging. Remote
sensing, image retrieval, face identification are among the applica-
tions that depend upon accurate color compensation.

In the past few years, many algorithms were developed to
compensate for radiometric mismatches. One approach takes im-
ages of a uniformly illuminated color chart of a known reflectance
as a reference, and estimates the parameters of the brightness trans-
fer function. However, uniform illumination conditions may not
be possible outside of a controlled environment, and temperature
changes can significantly effect the surface reflectance. Instead of
charts, some methods use registered images of a scene taken under
different exposure settings [1], [2], [3]. But these methods assume
a smooth and polynomial response function.

For a typical multi-camera system, in which the lighting con-
ditions may change frequently, the color calibration becomes a
critical concern. It is desirable to have an automatic calibration
system that does not require laborious burden of carrying color
charts between the cameras and adjustment of environment vari-
ables. Mostly, such a control may not be possible.

To solve the above problems, we designed a system that self-
calibrates color mismatches using available object detection and
tracking information. Here we assume that the images of the same
object is available for different cameras in the system. This can
be obtained manually or provided by object detection and track-
ing (Fig.1). We developed a correlation matrix and dynamic pro-
gramming based method that uses color histograms. Our method
computes a correlation matrix from a pair of histograms. This ma-
trix is a superset of all the bin-by-bin distance norms. Then, a
minimum cost path within the correlation matrix is found using
dynamic programming. This path is projected onto diagonal axis
to obtain a model function that can transfer one histogram to other.
A distance between histograms [5] can also be computed. In the
following section, we explain the proposed calibration setup.

2. COLOR CALIBRATION SETUP

We determine the relation between the radiometric responses of
the cameras using color histograms. Histograms are widely ac-
cepted as simple and useful probabilistic models. The use of color
histograms has been experimented in illumination compensation
for satellite imagery, similarity and region searches [4], object
searches, as well as image and video retrieval. A histogram, h,
is a vector [h[0], ..., h[M ]] in which each bin h[m] contains the
number of pixels corresponding to the color range of m in the im-
age I where M is the total number of the bins. The partitioning of
the color mapping space can be regular with identical bins, as well
as it can be irregular if the target distribution properties are known.
Without loss of generality, we assume that histogram bin sizes are
identical.

The calibration setup computes pair-wise inter-camera model
functions that transfer the color histogram response of one cam-
era to the other as illustrated in Fig. 1. First, videos of the same
scene or objects are recorded for each camera into the correspond-
ing databases. Let two cameras be Ca and Cb. We create image
databases V a : {Ia

1 , .., Ia
K} and V b : Ib

1, .., I
b
K} where 1 ≤ k ≤.

These databases contains images Ia
k and Ib

k that correspond to the
same scenes or objects. For each image pair Ia

k ,Ib
k we compute

three 1-D histograms ha
k,ch, hb

k,ch, ch : red, green, blue for color
channels. We will drop the last index for simplicity. Using his-
tograms ha

k, hb
k of each image pair in the databases, we compute

correlation matrices Ca,b
k that will be explained in the following

section. An aggregated correlation matrix C is calculated by aver-
aging the individual matrices as C = 1/K

∑K

k=1
Ca,b

k . The scal-
ing factor is included to normalize the matrix.

Then, a minimum cost path that connects two ends of the cor-
relation matrix is obtained by dynamic programming. This path
represents a mapping from one histogram to another. The shape of
the path indicates the amount of warping between the histograms.
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Fig. 1. (a) A multi-camera setup, which can contain one reference
and several uncalibrated cameras, generates camera-wise video
databases. After obtaining frame-wise histograms and computing
a correlation matrix, a minimum cost path is found by dynamic
programming. This path is converted to the inter-camera model
function. (b) Using the model function obtained in the previous
stage, the output of the second camera is compensated to match its
color distribution with the reference camera. (c) If the initial light-
ing conditions change, the object tracking information is utilized
to calibrate again.

Since certain linkage rules (as explained in section 4) are inte-
grated in the tracing process, the histogram bin ordering after the
mapping is maintained and any bin cross-over is prevented. A
model function between the histograms are formulated from this
path. We use three model functions to establish the radiometric
relation between two color cameras by assuming that the radio-
metric relation is separable and channel-wise independent. Our
motivation is to reduce the computational load of the calibration.
Since the model functions have transitive property, by using model
functions from Ca to Cb and from Cb to Cc, we can compute the
function between Ca and Cc.

3. CORRELATION MATRIX AND MODEL FUNCTION

We define a correlation matrix C between two histograms as the
set of positive real numbers that represent the bin-wise mutual
distances. Let h1[m] and h2[m] be two histograms with m =

Fig. 2. Relation of minimum cost path to model function.

1, . . . , M and m = 1, . . . , N . The correlation matrix is

CM×N = h1 ⊗ h2

=




c11 c12 . . . c1N

c21 . .
. . .

cM1 . . . cMN


 (1)

where each element cmn is a the distance between the correspond-
ing histogram bins. Note that, the sum of the diagonal elements
of C represents the bin-by-bin distance with given norm d(·) if the
histograms have equal number of bins, i.e. M = N . For exam-
ple, by choosing the distance norm as L1, the sum of the diagonals
becomes the magnitude distance between the histograms

M∑
m

cmm =

M∑
m

|h1[m]− h2[m]| = dL1(h1, h2). (2)

Let p : {(m0, n0), ..., (mi, ni), ..., (mI , nI)} represents a mini-
mum cost path from the c11 to cMN in the matrix C. The sum of
the matrix elements on the path p gives the minimum score among
all possible routes. The total length of the path I is limited as

√
M2 + N2 ≤ I ≤M + N (3)

We define a mapping f(ni) = mi using the bin indices of his-
tograms using the minimum cost path p. The model function is a
mapping from the histogram h2 to h1. Depending on the shape of
the path, this mapping may not be one-to-one. An inverse mapping
f−1(mi) = ni is also defined. Figure 2 illustrates the definitions.
Using the derivatives of the functions f, f−1 with respect to the
both indices mi, ni, we can determine the amount of warping be-
tween the bins of the two histograms;

∂f(ni) = ∂f−1(mi) : no warping

∂f(ni) < ∂f−1(mi) : h1 squeezed

∂f(ni) > ∂f−1(mi) : h2 squeezed.

Let f12(j) be the model function from the histogram h1 to h2, and
f23 be the model function from h2 to h3. Then, the model function
from the h1 to h3 is f13 = f23(f12).

4. DETERMINATION OF MINIMUM COST PATH

Given two histograms, the question is what is the best alignment
of their shapes and how can the alignment be determined? We re-
duce the comparison of two histograms to finding the minimum
cost path in a directed weighted graph. Let v be a vertex and e
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Fig. 3. (a) Minimum cost path for the same histograms, (b) and
warped histograms. With respect to warping direction, the model
function f(j) becomes negative or positive.

be an edge between the vertices of a directed weighted graph. We
associate a cost to each edge ω(e). We want to find the minimum
cost path by moving from an origin vertex v0 to a destination ver-
tex vS . The cost of a path p(v0, vS) = {v0, .., vS} is the sum of
its constituent edges

Ω(p(v0, vS)) =

S∑
s

ω(vs) (4)

Suppose we already know the costs Ω(v0, v∗) from v0 to every
other vertex. Let’s say v∗ is the last vertex the path goes through
before vS . Then, the overall path must be formed by concatenat-
ing a path from v0 to v∗, i.e. p(v0, v∗), with the edge e(v∗, vS).
Further, the path p(v0, v∗) must itself be a minimum cost path
since otherwise concatenating the minimum cost path with edge
e(v∗, vS) would decrease the cost of the overall path. Another ob-
servation is that Ω(v0, v∗) must be equal or less than Ω(v0, vS),
since Ω(v0, vS) = Ω(v0, v∗)+ω(v∗, vS) and we are assuming all
edges have non-negative costs, i.e. ω(v∗, vS) ≥ 0. Therefore if we
only know the correct value of Ω(v0, v∗) we can find a minimum
cost path.

We modified Dijkstra’s algorithm for this purpose. Let Q be
the set of active vertices whose minimum cost paths from v0 have
already been determined, and ~p(v) is a back pointer vector that
shows the neighboring minimum cost vertex of v. Then the itera-
tive procedure is given as

1. Set u0 = v0 Q = {u0}, Ω(u0) = 0, ~p(v0) = v0, and
ω(v) =∞ for v 6= u0.

2. Find ui that has the minimum cost ω(ui).

3. For each ui ∈ Q: if v is a connected to ui, assign ω(v) ←
min{ω(ui), Ω(ui) + ω(v)}. If ω(v) is changed, assign
~p(v) = ui and update Q← Q ∪ v.

4. Remove ui from Q. If Q 6= ∅ go to step 2.

(a)

(b)

Fig. 4. (a) Each vertex represents a matrix index combination and
each edge is the corresponding matrix element for that index. (b)
vertical and horizontal links have a penalty term to reduce accu-
mulation and dispersion.

Then the minimum cost path p(v0, vs) = {v0, ..., vS} is obtained
by tracing back pointers by starting from the destination vertex vS

as vs−1 = ~p(vs). The algorithm takes time O(S2). As shown
in Fig. 4, the graph that is converted from the cross-correlation
matrix is directed such that a vertex vmn has directional edges to
vertices vm+1,n, vm,n+1, vm+1,n+1 only. Therefore, we do not
allow overlaps of the bin indices, and eliminate cyclic paths.

However, since we are working on a finite grid, accumulation
and dispersion of the values will occur if the path does not traverse
diagonally. To minimize such routes, we added a penalty term δ
to each horizontal e(vm,n, vm+1,n) and vertical e(vm,n, vm,n+1)
edges. The value of the penalty term is set to δ = 0.001cmax

where cmax is the maximum value in the correlation matrix.

5. EXPERIMENTS AND CONCLUSION

We designed an experiment to evaluate the distortion compensa-
tion capability of the model function. We conducted this experi-
ment with several image-pairs. Each pair consists of a reference
image and a distorted version of its illumination histogram as in
Fig.5-a,b. The histogram distortions were non-linear. After we
computed the correlation matrix and the model function (Fig.5-
c), we transformed the histogram of the distorted image (Fig.5-b)
accordingly to obtained the illumination corrected image (Fig.5-
d). As visible in the histogram graphics the model function was
able to successfully compensate for the distortions. The results
of the other pairs confirmed this statement. The improvement is
significant even though the histogram operations are invariant to
spatial transformations, and thus have limited impact. In a sec-
ond experiment, we used the Oulu dataset. The cameras acquired
images under different lighting conditions, i.e. Planckian 2856K
and 2300K. Fig. 6-a,b shows sample pairs. Since each picture
is taken at a different time, there are appearance mismatches in
addition to the lighting and the camera difference. We computed



(a) (b)

(c)

(d)

Fig. 5. (a) Reference, and (b) over-exposed image. (c) The inten-
sity histograms of the input image (shown as black), of the over-
exposed image (blue), and of the compensated image (red). The
model function that maps the over-exposed image to the original
(red). (d) The compensated image.

the aggregated correlation matrices (Fig.6-c) for each color chan-
nel from 25 image pairs. Using the extracted model functions, we
calibrated the second camera to compensate for color mismatches.
A sample test image pair is given in Fig. 6-d,e. As visible in
Fig.6-f, the model function method achieves color compensation
successfully although the color distribution of the second image is
very different from the reference (attenuated blue and biased red,
green channels). Using larger datasets improves the accuracy of
the model function.

We presented a novel inter-camera color calibration method
that uses a model function to determine how the color histograms
of images taken at each camera are correlated. Unlike the exist-
ing calibration approaches, our method does not require special,
uniformly illuminated color charts, does not compute individual
radiometric responses, does not depend on the additional shape
assumptions of the brightness transfer functions, and does not in-
volve exposure control. Furthermore, our method can model non-
linear, non-parametric color mismatches and it can handle cameras
that have different color dynamic ranges. As a future work, we
plan to apply this method to recognize objects in a non-overlapping
field of view multi-camera system.

(a)

(b)

(c)

(d) (e) (f)

Fig. 6. Samples from the training data: (a) images acquired un-
der Plankian 2856K light using a camera balanced for Plankian
2856K, (b) images acquired under the same light but a camera bal-
anced for Planckian 2300K. (c) Computed correlation matrices and
minimum cost paths for the R ,G, B color channels. Last row: The
(d) reference, (e) input, and (f) compensated images. Note that, the
images are not acquired at the same time instant which makes the
calibration more challenging. Dataset is courtesy of Matti Pietiki-
nen, University of Oulu, Finland.
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