
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Learning Hierarchical Task Models By
Demonstration

Andrew Garland and Neal Lesh

TR2003-01 February 2003

Abstract

Acquiring a domain-specific task model is an essential and notoriouslyand empirical results that
measure the utility of possible annotations.

Submitted to IJCAI ’03

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2003
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Submitted January 2003.

Learning Hierarchical Task Models By Demonstration

Content Areas: knowledge acquisition, machine learning

Abstract

Acquiring a domain-specific task model is an essen-
tial and notoriously challenging aspect of build-
ing knowledge-based systems. This paper presents
machine learning techniques that ease this knowl-
edge acquisition task. These techniques infer hier-
archical models, including parameters for non-
primitive actions, from partially-annotated demon-
strations. Such task models can be used for plan
recognition, intelligent tutoring, and other collab-
orative activities. Among the contributions of this
work are a sound and complete learning algorithm
and empirical results that measure the utility of pos-
sible annotations.

1 Introduction
Much work in AI aims to produce general algorithms that
operate on declarative representations of domain-specific
knowledge. However, encoding this knowledge is notori-
ously difficult and slow, and is dubbed the knowledge acqui-
sition bottleneck to building knowledge-based systems. One
approach to ease knowledge acquisition is to learn domain
concepts from examples. In this work, we focus on the prob-
lem of acquiring task models, which are declarative represen-
tations of the actions that can be performed in a domain.

Past work on learning task models has investigated meth-
ods for learning from examples of sequences of actions exe-
cuted to achieve a goal [Bauer, 1998, 1999; Lau et al., 2000],
and learning from information about the state of the world
before and after actions are executed [Wang, 1995; van Lent
and Laird, 1999; Angros Jr., 2000; Tecuci et al., 1999].
Learned task models have been shown useful for a variety of
tasks including plan recognition [Bauer, 1998, 1999], intel-
ligent tutoring [Angros Jr., 2000], and action selection [van
Lent and Laird, 1999].

We are interested in learning hierarchical task models
because they allow learned concepts to be combined in novel
ways. In this paper, we present and analyze techniques for
inferring a hierarchical task model from examples provided
by a domain expert. Each example is a demonstration of a
goal-directed action sequence. Our techniques do not assume
a demonstration contains state information; thus they are use-
ful even when experimentation or observation of the state is
not feasible. Because we learn hierarchical task models, one

demonstration of a subtask applies to other tasks that include
this subtask.

The primary contributions of this paper are:
� formalized notions of soundness and completeness for

learning task models from examples. No past work has
formalized desirable properties for task model learning.

� an implemented and provably sound and complete algo-
rithm for learning task models from examples.

� methods for inducing both parameters of non-primitive
actions and equality constraints between parameters,
which we will refer to collectively as propagators.

� experiments in two domains that suggest an appropri-
ate division of labor between the human expert and the
learning algorithm.

Inducing propagators is a significant contribution because
propagators are essential to develop an effective hierarchical
task model, and are particularly difficult for people to specify.
The next section gives examples of the role of propagators in
task modeling and Section 3.1 shows the difficulty of learning
them from examples. Past work on learning hierarchical task
models [van Lent and Laird, 1999; Tecuci et al., 1999] has not
addressed learning propagators.

2 Task Model Learning
Informally, a task model learning algorithm must convert a
series of demonstrations into a task model that accepts the set
of action sequences that are consistent with the demonstra-
tions. Our techniques leverage both syntactic and preference
biases in order to infer sound and complete models.

2.1 Learning a hierarchical task model

Suppose one is trying to learn a model of making a pasta din-
ner based on the following two examples. In Example A,
the chef performs five actions, labeled A1 to A5; in Exam-
ple B, the chef performs actions B1 to B6. The indentations
in each example constitute the segmentations, or groupings,
that reflect the hierarchical nature of the task. For exam-
ple, actions A3 and A4 collectively constitute preparing a
sauce, as do B1 and B2. To simplify exposition, we modeled
ingredients as part of the action types, e.g. AddGarlic(pot2)
instead of Add(garlic1,pot2).

MakePastaDinner

PreparePasta
���������
	����	��

Transfer
���������
	����	������������

PrepareSauce
����������	���� �!�

Transfer
����������	���� �
���������"�# # $

%%%%%%
& & & & & &

''''''''''''
((((((((((((

PreparePasta
�������)�

BoilPackagedPasta
�������)�

PreparePasta
�������)�**** + + + +MakeNoodles

�"�
CookNoodles

�������)�#
PrepareSauce

�������)�,,, - - -AddGarlic
�������)�

Sautee
�������)�#

PrepareSauce
�������)�,,, - - -AddTomatoes

�������)�
Simmer

�������)�#
Figure 1: Sample task model consistent with Examples A and B.

Example A

MakePastaDinner
PreparePasta
A1. BoilPackagedPasta(pot1)

A2. Transfer(pot1,bowl1)
PrepareSauce
A3. AddGarlic(pot2)
A4. Sautee(pot2)

A5. Transfer(pot2,bowl1)

Example B

MakePastaDinner
PrepareSauce

B1. AddTomatoes(pot3)
B2. Simmer(pot3)

PreparePasta
B3. MakeNoodles()
B4. CookNoodles(pot4)

B5. Transfer(pot4,bowl2)
B6. Transfer(pot3,bowl2)

These two examples imply many things about making a
pasta dinner. For one, they indicate that there are four essen-
tial steps in making a pasta dinner: preparing the sauce,
preparing the pasta, adding the pasta to the bowl, and adding
the sauce to the bowl. The first two of these four steps can
each be accomplished in two different ways. For instance,
one can make either a tomato sauce or a garlic and oil sauce.
The examples suggest that there are four possible combina-
tions of sauce and pasta, although only two combinations
were demonstrated.

In addition, the examples imply that there are various per-
missible orderings of the steps. It is possible to prepare the
pasta before the sauce or vice versa. In contrast, the pasta is
always added to the bowl before the sauce. Future examples,
however, may show that ingredients may be added to the bowl
in any order.

As will be seen later, these examples highlight the difficul-
ties in learning propagators. Propagators constrain the values
of parameters, such as making sure that the chef adds all of
the ingredients to the same bowl. Similarly, the chef must
cover the pasta with the contents of the pot containing the
prepared sauce, not some other pot. However, different pots
are used to prepare the sauce and the pasta. Such relationships
are non-local because they involve constraining the parame-
ters of actions in different segments.

Figure 1, described in the next section, presents a graphical
depiction of a task model consistent with these examples.

2.2 Task model language
We learn hierarchical task models composed of actions and
recipes. The set . of objects types (such as pots and bowls)
is not learned but is treated as a given. Each learned model /
is a pair 0�132�465 , where 1 is a set of actions and 4 is a set of
recipes.

An action is either a primitive action, which can be exe-
cuted directly, or a non-primitive action, which is achieved
indirectly by achieving other actions. Each action 7 in 1 is
a pair 0)897:/<;:2>= ?A@>2�?CBD2�E�E�E F)5 , where 897:/<; is unique identifier
for 7 called an action type and each ?�G is a parameter of 7 . In
turn, each parameter ? is a pair 0)897:/<;:2�H!I>?C;J5 where 897:/K;
is unique among the parameters of 7 and H!IL?M; is an object

type. Note that this representation does not include any causal
information, i.e. preconditions or effects.

Recipes are methods for decomposing non-primitive
actions into subgoals. A recipe NPOQ4 is composed of the
four-tuple: 0�897:/<;:2�7SR�TVU!;>W:;JXY2�= XJ@>2�X>BD2�E�E�E F�2�Z[5 , where 897Y/K;
is a unique identifier, 7:R�T\U!;>W:;JX]O^1 , each XJG is a step ofN , and Z is a set of constraints. In turn, each step X is a
pair 0)897:/K;:2�H!IL?M;J5 where 897:/<; is unique among the steps
of N and H!IL?M; is an action type, i.e., the name of an action in1 . Z imposes temporal partial orderings among the steps, as
well as other logical relations among their parameters. In this
paper, the only type of logical relation considered is equality.
There may be several recipes for achieving a single action.

Figure 1 presents a graphical depiction of a task model
that is consistent with Examples A and B. This model con-
tains 5 recipes; for each recipe, the type of action that is
achieved is the root of a one-level tree with the recipe steps as
the leaves. Each temporal ordering constraint is represented
by an arrow between two steps. Within each recipe, equal-
ity constraints are represented by using the same name for
the parameters. For example, there is an equality constraint
between the two parameters named ?C_LH ��`�a!��` in the recipe for
achieving MakePastaDinner. (Note that steps are denoted by
their type, whereas parameters are denoted by their name.)

We represent the demonstrations provided by the user as
segments, which themselves can contain other segments. For-
mally, a segment b is a pair 0 X>;�c:/K;>8AH!.dIL?M; , = ; @ 2
; B 2�E�E�E Fe5 .
Each ; G , called a segment element, is either a primitive action
or a segment. Segmentations group together the actions
that constitute an occurrence of a non-primitive act of typeX>;�c:/K;>8AH!.dIL?M; . An annotated example (also referred to as
an example, below) is a segment which corresponds to an
entire demonstration of a task by the user. Due to space
constraints, segmentations are the only annotation we define
precisely. Other annotations allow a domain expert to indi-
cate that examples similar to the one being annotated are also
acceptable, and can speed learning. We discuss several types
of annotations in the Experiments section.

We now define what it means for a task model to accept
an example. A given model / corresponds to a set of
task networks: each network has an action from 1 at the
top, with exactly one recipe applied to each non-primitive
in the network, with an object assigned to each parameter
in every action in the network, and with no constraint vio-
lations. Because the recipe steps are partially ordered, there
are multiple total orderings of the primitive actions in a net-
work. Each total ordering corresponds to exactly one seg-
mentation, in which actions that achieve the same action are
grouped together. Given this, accept f)/g2�;Jh is defined as true
for an example ; iff ; is the segmentation of a total ordering
of a task network of / .

2.3 Soundness and completeness
This subsection describes the properties of soundness and
completeness for task model learning. Roughly speaking, a
sound and complete task model is the “intersection” of the set
of task models that are consistent with the input examples.
More precisely, a sound task model accepts only, but perhaps
not all, examples that are accepted by every task model that is
consistent with the input. A complete task model accepts all,
and perhaps additional, examples that are accepted by every
task model that is consistent with the input.

Let � be the set of possible annotated examples, and � be
the set of possible task models. � may be partially ordered
to reflect a preference order on its models (one will be intro-
duces in Section 3.1). A task model learning algorithm �
takes a set of annotated examples ������ and returns a model/ O�� . � is sound and complete if, for all �� , the model/	�
� f��� h is sound and complete, as defined below:

� / is consistent with �� iff �A;[O�� , accept f�/ 2
;Lh .
� / is a preferred consistent model for �� if / is consistent

with �� and �C/�� O�� that are consistent with �� , /��
is not ordered before / . Let PCM f��� h be the set of all
preferred consistent models for �� .

� / is sound on �� iff for all ; O�� , accept f�/ 2
;Lh��
f��C/��AO PCM f �� h�2 accept f)/���2
;Lh�h .

� / is complete on �� iff for all ; O
� , accept f)/g2�;Jh��
f��C/��AO PCM f��� h�2 accept f)/���2
;Lh�h .

Note that a preferred consistent model must be complete,
but that a complete model may not be preferred.

3 Learning algorithm
This section details our algorithm for learning hierarchical
task models from demonstrations. The focus is on inferring
parameters of non-primitive actions and equality constraints
between parameters, referred to collectively as propagators.

Figure 2 contains pseudo-code for our task model learn-
ing algorithm (called LEARNMODEL), which requires poly-
nomial time. The first function called by LEARNMODEL,
ALIGN, efficiently solves what we call the alignment problem
by leveraging two syntactic biases on the hypothesis space of
task models.

The alignment problem is determining which segments,
possibly in different examples, correspond to the same recipe,
and which segment elements correspond to the same recipe
step. For example, suppose we know action sequences7 @ 2
7 B 2�7�� and 7�� 2�7 B 2
7 @ both achieve the same non-primitive.
These examples might both correspond to the same recipe,
with no ordering constraints, or might correspond to two dif-
ferent, totally-ordered recipes. Similarly, there can be ambi-
guity about which segment elements correspond to the same
recipe step if segments contain multiple steps of the same
type. We address the alignment problem by introducing the
following syntactic biases:

Unique steps assumption: if two recipes achieve the same
non-primitive, they have different sets of step types or a dif-
ferent number of steps of some type.

Multiple steps assumption: if a recipe contains multiple
steps of the same type, those steps are totally ordered.

LEARNMODEL ������! "$#&% ALIGN � ����"(')% INDUCEORDERING � "$#+* ����
return INDUCEPROPAGATORS � ",'-* ��.�

Figure 2: Pseudo-code to learn a task model

These assumptions hold in the domains we have examined;
in other domains, other biases or heuristics may be needed
to alleviate the search problem faced by ALIGN. The other
components of our learning algorithm do not depend on these
assumptions.

ALIGN groups all segments together that have the same
segment type and whose segment elements have the same
set of segment types (counting repeats). ALIGN constructs a
recipe for each group, with a step for each segment element.
It then constructs a mapping from each segment in a group to
the recipe that was created for that group. (The mappings cre-
ated by ALIGN are used by subsequent functions in LEARN-
MODEL). For every segment, ALIGN maps the U th segment
element it contains of a given type to the U th recipe step of
that type in the recipe that the segment is mapped to.

Next, our algorithm determines ordering constraints
between steps. The INDUCEORDERINGS function adds a
constraint that orders step X G before step X0/ unless there is
a segment that contains elements ; G and ;1/ such that ; G is
mapped to XLG and ; / is mapped to X / and ; / occurs before ;JG .

The following theorem states that the first two functions of
LEARNMODEL produce a task model that is correct, except
that it contains no propagators.
Theorem 1: If there exists a sound and complete model for
example set �� , then there exists a sound and complete model/ such that INDUCEORDERINGS(ALIGN(��), ��) and / differ
only in their propagators.
Proof sketch: Let /�� be a sound and complete model on �� .
For every segment X in every example in �� , there must be
a recipe with the same distribution of step types as segment
element types in X , or else /2� could not accept that example.
Conversely, any recipe in /2� whose distribution of step types
does not match any segment’s types can be removed from /3�
without changing the examples accepted by / � , or else / �
would not be sound. Let / be the result of removing such
extraneous recipes from /2� .

Given the unique steps assumption, / must have the same
recipes as ALIGN, ignoring propagators and ordering con-
straints. Given the multiple steps assumption, there is only
one possible mapping between segment elements and recipe
steps. If / allows a step X G to be ordered before a step X1/ ,
then X>G must maps to a segment element that appears before
the element that X / maps to in some segment, or else / will
not be sound. Thus, / and the model produced by INDUCE-
ORDERINGS will allow the same orderings. 4
3.1 Inducing propagators

A challenge of learning hierarchical task models is that they
must enforce equality relationships that cross the boundaries
of many actions and recipes. For example, a task model to
describe changing a flat tire must ensure that the wheel is the
same, but different tires will be used. Propagators collectively
enforce such non-local equalities.

MPD
PP�����

�
� # �

PS�����
�
� ' �

MPD
PS�
	 " � ��� �
PP�	�	

�
��� �

Figure 3: Two examples

MPD,, - -
PP ��� *
� � PS � � * � �

PP ��� *�� �
bpp ��� �

PP � � *�� �
noo � � �

PS ��� *�� �
gar ��� �

PS � � *�� �
tom � � �

Figure 4: A counter-intuitive consistent task model

MPD��
PP PS

PP

bpp � � �
PP

noo � � �
PS

gar � � �
PS

tom � � �
Figure 5: The preferred task model

A problem arises when learning sound task models that
include propagators, however. Figures 3 to 5 illustrate this
problem. Figure 3 contains simplified versions of Examples
A and B, using abbreviated action names (e.g. ��? ? instead
of BoilPackagedPasta) and omitting some actions; Figures 4
and 5 show task models consistent with the examples. In
these figures, all parameters are pots and a dot indicates a
parameter that is not constrained.

Consider the decision of whether to add propagators to
enforce an equality constraint between the parameters of two
recipe steps in the task model. For any set of annotated exam-
ples �� , there are three situations to consider:

1. contradicting evidence exists in �� , i.e., there is an exam-
ple ; in �� where the parameters are unequal. In Figure 3,
the left-hand example provides contradicting evidence
between the pot parameters of the steps of type ��? ? andc 7:N .

2. only supporting evidence exists in �� , i.e. there are some
examples where the steps’ parameters are equal, and no
contradicting evidence. This case holds for the bowl
parameters in Examples A and B.

3. no relevant evidence exists in �� , i.e., there is no example
that contains both steps. In Figure 3, the pot parameters
for the steps of type �!? ? and H�_L/ fall into this category.
The examples imply that doing ��?Y? and then H�_L/ will
achieve MPD, but no example contains both steps.

In the first case, clearly the task model should not enforce
an equality between the parameters. In the second case, it is
possible that all the supporting evidence has been coinciden-
tal, but until contradictory evidence is seen, a sound model
must only accept examples in which the two steps’ parame-
ters have the same value.

The third case is not as straightforward. As shown by Fig-
ure 4, there exist consistent task models that constrain the
parameters of steps to be equal if there has been no evidence
given about their relationship. The model in Figure 4 is con-
sistent with all observed data because the elaborate propaga-
tors it contains only effect the unobserved combinations of
preparing sauce and pasta.

More generally, by the definition of soundness, every
sound model must also constrain parameters with no relevant
evidence to be equal. Thus, a sound and complete learning
algorithm must treat the no relevant evidence case the same
as the only supporting evidence case.

The problem with such models is that they postulate elab-
orate constraints that are not suggested by any example. To
avoid adding any such counter-intuitive constraints, the learn-
ing algorithm must be given an example for every pair of
parameters that are unrelated to each other.

To address this problem, we propose the following bias:

Propagators with support preference bias: We prefer any
model in which every propagator has only supporting evi-
dence in �� to all models that contain a propagator for which
no relevant evidence exists in �� .

The effect of the bias is shown in Figures 4 and 5. In Fig-
ure 4, no propagators have supporting evidence because no
parameter values are equal in the two input examples. Thus,
the preferred task model in Figure 5 is sound and complete.

3.2 Propagator induction algorithm
Figure 6 shows pseudo-code for an algorithm for learning
propagators. A data structure that facilitates the computation
of propagators is a ?M7:H�T . A path “starts” at a parameter of
a primitive action and “follows” a possibly empty sequence
of recipe steps. Given a path ? , PARAMETER f�?�h returns the
parameter at the start of the path; also, if ? has a non-empty
sequence of steps, STEP f�?Ch returns the last recipe step and
RECIPE f�?Ch returns the recipe that contains STEP f�?�h .
INDUCEPROPAGATORS � "$* ����!

forall in ALLRECIPES � " �
ADDCONSTRAINTS �� * ����

ADDCONSTRAINTS �� * ��.�! ! % PATHSTORECIPE ��" * ��.�
forall sets # � * �%$�& in PATHPAIRINGS � ! * ������ "(' % PROPAGATENAME �

� * null
��� "(' $ % PROPAGATENAME �

�%$ * null
�

add a constraint between parameter
�� ")' of STEP �

� �
and parameter

�� ")' $ of STEP �
� $ �

PROPAGATENAME �
� * �%*+�,�%	�- '/.10 	/� � �
��2 0�% TAIL �

� �
if
���32 0 has no steps
then

- 0 	4�657� ")' %
NAME � PARAMETER �

� �-�
else- 0 	4�65)� ")' %

GENSYM � �
PROPAGATENAME �

�
��2 0 * - 0 	4�657� ")' �
if
�%*+�,�%	�- '/.10 	/�98: null" % RECIPE �

� �
add a parameter named

�%*+�,�%	�- '/.10 	/� of type
TYPE � PARAMETER �

� �-�
to PURPOSE ��" �

add a constraint between
�%*%�;�%	�- '/.<0 	4� of PURPOSE ��" �

and parameter
- 0 	/�
5)� "(' of STEP �

� �
to "

return slotName

PATHPAIRINGS � ! * ��.�! = %?>
forall

� * �%$ in
!

such that
�@8: �%$

if PARAMETER �
� �

and PARAMETER �
� $ �

have only supporting evidence in ��
or (the preference bias is not in effect

and no relevant evidence exists in ��)
then

= % =BA #�# � * �%$C&�&
return

=
Figure 6: Pseudo-code to infer propagators

The algorithm works by considering all pairs of paths that
end at the same recipe 4 . If the parameters at the start of
these paths should always be constrained to be equal (the cri-
teria for this depends on the preference bias), then a set of
propagators are added to the task model to make sure this will
be the case. The propagators are added in a top down fash-
ion, first with a constraint on 4 , and then recursively adding
parameters to non-primitives and constraints to recipes that
achieve them.
Theorem 2: Given a set �� , and a task model / without any
propagators such that there exists a model / � that is sound
and complete on �� , and that / and /2� differ only in their
propagators, then INDUCEPROPAGATORS(/ 2&��) will return a
sound and complete model.
Proof sketch: The role of propagators is to enforce equality
among the parameters of primitive actions that must be equal,
based on the annotated examples. Since equality is a binary,
transitive relationship, it suffices to consider parameters on a
pair-wise basis. If any parameters have been unequal in any
of the annotated examples, then our algorithm will not make
them equal. This is appropriate since this example implies
that a consistent model should not force them to be equal.
Otherwise, without a preference bias, our algorithm will force
the parameters to be equal which is appropriate since there
exists a preferred, consistent model which forces the param-
eters to be equal. If we use the propagators with support
preference bias, then our algorithm will not force the pair of
parameters to be equal which is appropriate since any model
that enforces equality will contain unsupported propagators. 4

It follows as a corollary of Theorems 1 and 2 that LEARN-
MODEL is sound and complete.

4 Implementation and empirical results

The algorithm described in the previous section is a simpli-
fied version of the one we have implemented. Our implemen-
tation accepts many kinds of annotations other than segmen-
tations. In addition, it can learn a wider class of task mod-
els than described earlier, where recipe steps can be labeled
as optional. (Space limitations prevent technical discussion
of optional steps, including its effect on the alignment prob-
lem, in this paper.) Furthermore, our implementation is incre-
mental and while the INDUCEPROPAGATORS algorithm we
presented produces an inordinate number of propagators, our
implementation re-uses propagators when possible.

An example of the annotations our system accepts is that
the user can specify that two actions in an example could
have been performed in either order. This directly pro-
vides the same information that a second example might
have provided. Another important annotation is that the user
can directly specify that two parameters do not have to be
equal. Other possible annotations are non-primitive parame-
ters, recipe names, step names, or step optionality.

The goal of our experiments is to better understand the
tradeoff between how many annotations the expert provides
in each example and how many examples must be provided.
In order to do so, we simulate a human expert that pro-
vides varying types of annotations. This approach focuses
the results on this tradeoff rather than the best way to elicit
annotations from the expert.

We based our experiments on two manually created task
models. The first models part of a sophisticated tool for
building graphical user interfaces, called Symbol Editor. The
model was constructed in the process of developing a col-
laborative agent to assist novice users. The model contains
29 recipes, 67 recipe steps, 36 primitive acts, and 29 non-
primitive acts. A typical example contains over 100 primitive
actions. The second test model was a cooking world model
designed specifically to develop and test the techniques pre-
sented in this paper. The model contains 8 recipes, 19 recipe
steps, 13 primitive acts, and 4 non-primitive acts. An example
typically contains about 10 primitive actions. Both models
have recursive recipes.

Segmentations and non-primitive action names (i.e., seg-
ment types) are always provided by the simulated expert, but
we varied whether the other annotations were provided. For
each combination of annotations, we use the known task mod-
els to generate a corpus of annotated examples (500 for the
symbol editor and 1000 for cooking). Then we ran the learn-
ing algorithm on all examples and hand-verified that the pro-
duced task model (called the target task model below) was
semantically equivalent to the original task model.

For each learning trial, input examples were drawn at ran-
dom (without replacement) from the corpus. After each
example, we determine if the algorithm has produced a task
model that accepts the same sequences as the target task
model. Also, for each example, we determine if it was useful,
i.e. if it contained any new information that was not implied
by the previous examples, by seeing if the algorithm’s inter-
nal data structures were altered.

We ran all possible combinations of annotation types, and
report a subset in Table 1. In the table, O indicates that all
ordering annotations are given, I indicates that all inequality
annotations are given, and P indicates that all non-primitive
parameters are given. Unlike other runs, the annotations
for “All” include recipe and step names. The reported val-
ues are averaged over randomized sequences of examples —
100 trials for each domain. All columns (other than the one
labeled “Useless”) report statistics about the distribution of
the number of useful examples required to match the target
task model.

One conclusion to be drawn from Table 1 is that non-
primitive parameters are the single-most useful kind of anno-
tation that can be provided. This is unsurprising since it
frees the algorithm from trying to learn the most complicated
relationships in the data. The main surprise is that provid-
ing inequality annotations significantly reduces the number
of useful examples, whether or not non-primitive parameters
are provided (compare rows “I” and “None” as well as rows
“PI” and “P”). This is interesting because it seems likely that
a human expert can easily indicate when apparent equalities
in the example are coincidental.

Table 1 also shows that learning is strongly influenced by
the order in which examples are processed. This is reflected
both by the minimum number of useful examples for any trial
(the “min” column) and the average number of useless exam-
ples per trial (the “useless” column). We suspect that a human
expert would present examples with high utility.

The column labeled “Error (8)” in Table 1 shows the error
rate after 8 useful examples have been seen. The error rate is
measured as the fraction of the total information that remains

Additional Cooking Symbol Editor
Annotations Avg. Dev. Min. Max. Useless Error (5) Avg. Dev. Min. Max. Useless Error (1)
All 5.27 1.43 3 10 8.02 2.9% 1.71 0.57 1 3 0.05 1.9%
PIO 6.56 1.43 3 10 10.67 4.7% 1.71 0.57 1 3 0.05 1.9%
PI 7.33 1.56 4 11 16.46 5.2% 2.90 0.64 2 4 0.75 2.2%
PO 10.99 2.02 5 15 16.51 11.6% 2.94 0.63 2 5 0.28 3.2%
P 11.31 2.10 5 16 19.04 11.6% 3.55 0.76 2 6 0.60 3.4%
IO 14.64 3.38 6 22 54.43 6.3% 3.84 1.11 2 7 0.18 2.1%
I 15.04 3.39 6 22 54.08 6.6% 4.38 1.22 2 7 0.22 2.3%
O 27.96 5.40 15 46 183.00 13.2% 8.77 1.90 5 15 1.97 4.6%
None 28.09 5.46 15 46 182.87 13.4% 8.84 1.84 5 15 1.91 4.8%

Table 1: The kind of annotations provided influences the number of examples needed to learn task models.

to be learned, i.e. how much the internal representations of
the current task model and the target model differ. The table
shows that even when it takes many examples to learn the
correct model, e.g., when no extra annotations are given, the
techniques quickly learn a model which is close to the correct
model.

5 Related research and Conclusion
The hierarchical nature of our input data makes learning task
models an unusual concept learning or inductive logic pro-
gramming problem. The learned concepts, i.e. task mod-
els, are composed of many smaller concepts, i.e. actions and
recipes. Each example can provide information that general-
izes each concept in isolation, as well as information about
how the concepts interrelate. Our techniques can be seen as
specialized and efficient solutions that leverage the hierarchi-
cal characteristics of this concept learning problem.

Bauer (1998; 1999) presents techniques for acquiring non-
hierarchical task models from unannotated examples for the
purpose of plan recognition. Bauer introduces heuristics for
solving what we refer to as the alignment problem. (In con-
trast, we side-step the problem by restricting the task model
language.) We extend upon Bauer’s work to handle hier-
archical task models and optional steps. Additionally, we
introduce the notions of soundness and completeness for task
model learning and show our algorithm has these properties.

Tecuci et al. [1999] present techniques for producing hier-
archical if-then task reduction rules by demonstration and dis-
cussion from a human expert. The rules are intended to be
used by knowledge-based agents that assist people in gener-
ating plans. In their system, the expert provides a problem-
solving episode from which the system infers an initial task
reduction rule, which is then refined through an iterative pro-
cess in which the human expert critiques attempts by the sys-
tem to solve problems using this rule. Tecuci et al. have
not presented formal analysis of their algorithms, specifically
addressed the problem of inferring parameters for learned
actions, or conducted experimental exploration of the division
of responsibility between the user and learning algorithms.

Other research efforts have addressed aspects of the task
model learning problem not addressed in this paper. Angros
Jr. [2000] presents techniques that learn recipes that con-
tain causal links, to be used for intelligent tutoring systems,
through both demonstration and automated experimentation
in a simulated environment. Lau et al. [2000], in one of
the few formal approaches to learning macros, use a ver-
sion space algebra to learn repetitive tasks in a text-editing

domain. Gil et al. [Gil and Melz, 1996; Kim and Gil, 2000]
have focused on developing tools and scripts to assist peo-
ple in editing and elaborating task models, including tech-
niques for detecting redundancies and inconsistencies in the
knowledge base, and making suggestions to users about what
knowledge to add next.

In conclusion, this paper presented the first formal defi-
nitions of soundness and completeness of task model learn-
ing, and a sound and complete algorithm for learning task
models from partially-annotated examples. An important and
novel aspect of our algorithm is that it learns hierarchical
task models, including propagators. Finally, we conducted
an empirical study that suggested human experts can signifi-
cantly speed learning simply by noting when apparent equal-
ities are coincidental.

References
Richard Angros Jr. Learning What to Instruct: Acquiring Knowl-

edge from Demonstrations and and Focussed Experimentation.
PhD thesis, University of Southern California, 2000.

Mathias Bauer. Acquisition of Abstract Plan Descriptions for Plan
Recognition. In Proc. 15th Nat. Conf. AI, pages 936–941, 1998.

Mathias Bauer. From Interaction Data to Plan Libraries: A Cluster-
ing Approach. In Proc. 16th Int. Joint Conf. on AI, pages 962–
967, 1999.

Y. Gil and E. Melz. Explicit representations of problem-solving
strategies to support knowledge acquisition. In Proc. 13th Nat.
Conf. AI, pages 469–476, 1996.

J. Kim and Y. Gil. Aquiring problem-solving knowledge from end
users: Putting interdependency models to the test. In Proc. 17th
Nat. Conf. AI, pages 223–229, 2000.

Tessa Lau, Pedro Domingos, and Daniel Weld. Version space alge-
bra and its application to programming by demonstration. In
Proc. 17th Int. Conf. on Machine Learning, pages 527–534, 2000.

G. Tecuci, M. Boicu, K. Wright, S. Lee, D. Marcu, and M Bowman.
An integrated shell and methodology for rapid development of
knowledge-based agents. In Proc. 16th Nat. Conf. AI, pages 250–
257, 1999.

Michael van Lent and John Laird. Learning hierarchical perfor-
mance knowledge by observation. In Proc. 16th Int. Conf.
on Machine Learning, pages 229–238. Morgan Kaufmann, San
Francisco, CA, 1999.

Xuemei Wang. Learning by observation and practice: an incremen-
tal approach for planning operator acquisition. In Proc. 12th Int.
Conf. on Machine Learning, pages 549–557, 1995.

	Title Page
	Title Page
	page 2

	Learning Hierarchical Task Models By Demonstration
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

