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Abstract

In complex environments, a planning system may be faced
with incomplete information about both the planning opera-
tors and the state of the world. Previous research has inves-
tigated policies for selecting the best plan to execute, given
incomplete operator descriptions. This paper extends that
work to support interleaved planning and execution by tak-
ing into account past and current sensor readings.

1 Introduction
In complex environments, a planning system may be faced
with incomplete information about both the planning opera-
tors and the state of the world. While there has been substan-
tial research effort devoted to planning in the face of incom-
plete state information (e.g,Levesque, 1996; Golden, 1998;
Babaian & Schmolze, 2000), there has been little research on
how to plan with incomplete planning operators, i.e., oper-
ators that may be missing preconditions and effects. Most
past work in this area has produced machine learning tech-
niques for improving operator descriptions for future plan-
ning episodes (e.g.,Gil, 1994; Wang, 1995; Oates & Cohen,
1996). Garland & Lesh(2002) reported on an initial explo-
ration into a complementary approach that focuses on select-
ing the best plan to execute for the current goal. This paper
extends that work to address issues pertinent to continuous
planning and re-planning.

Our work is partly motivated by the premise that complete
action descriptions are sometimes impossible, and always
difficult and time-consuming, to construct. For example,
action descriptions cannot be guaranteed to be complete
for domains that human experts cannot directly experience,
such as navigating on the surface of another planet. In
our approach, the domain experts who generate the action
descriptions can provide additional information about the
completeness of the model, similar to statements used to
reason about incomplete states. For example, the experts
can indicate which actions have been completely described,
or that executing an action will not change the truth value of
a domain literal.

The advantage of the approach proposed inGarland &
Lesh(2002) is to more often execute plans that achieve their
goals. For example, the techniques will sometimes prefer a
plan because of certain orderings of actions, or the substitu-
tion of an action by one with similar effects. Even in the case

where the domain experts provide no information about the
completeness of the model, the techniques can select plans
that are more likely to succeed than if the incompleteness of
the model is ignored.

This paper extendsGarland & Lesh(2002) by generaliz-
ing the techniques to support interleaved planning and exe-
cution based on (simplified models of) sensors and observed
external events. The extensions are equally useful for con-
tinuous planning sessions that involve solving a long series
of goals. The techniques we present reason efficiently over
arbitrarily long execution histories by integrating the antici-
pated effects of past actions together with past sensor read-
ings to form a model of the current state of the world.

2 Background
This section describes the framework and representations
developed byGarland & Lesh(2002); our extensions are
described in Section3.

We assume a traditional planning representation. We also
assume that for any planning domain, there exists a set of
complete and correct action descriptions, which we will
refer to asDtrue. The set of action descriptionsD avail-
able to a planner (or plan evaluator) will be a subset of the
information inDtrue.

Each action description consists of a specification of its
preconditions and effects as sets of fluent literals. Thus,
each action descriptiona in D may include only a subset
of a’s preconditions and effects inDtrue. In future work,
we will look to extend the representations and techniques in
this work to accommodate action descriptions that include
conditional effects.

A plan is a sequence of actions that is intended to achieve
a goal when executed in an initial state. Executing an action
in a state in which all of its preconditions are true will pro-
duce a new state in which all of its effects are true and all
other fluents remain unchanged. Executing an action with
any false preconditions has no anticipated effect on the state.
We defineachieves(D,S,g,p) as returning true iff the goal
g is true in the state that results from simulating the execu-
tion of planp from stateS assuming thatD is correct and
complete.
D may be supplemented with statements about the com-

pleteness of action descriptions. Our approach follows the
use of locally closed-world (LCW) statements that are used



init planC1 goal
{p} p[a1]r [a2]q {r,q}

Risks forC1

PRECOPEN(a1)
PRECOPEN(a2)
POSSCLOB(a2, r)

init planC2 goal
{p} [a2]q p[a1]r {r,q}

Risks forC2

PRECOPEN(a1)
PRECOPEN(a2)
POSSCLOB(a1, q)
POSSCLOB(a2, p)

Figure 1:Action order. These two plans differ only in the order of the actions, but they have different numbers of risks.

to overcome incomplete state information. In that setting,
an LCW statement expresses limited knowledge of the state,
such as that all the files that exist in a particular directory
are known by a software agent (Golden, 1998; Babaian &
Schmolze, 2000). In our work, an LCW statement expresses
limited completeness of action descriptions.

LCW statements about actions inD are defined
in terms of three predicates: DoesNotRelyOn,
DoesNotMakeTrue, andDoesNotMakeFalse.1 The
statementDoesNotMakeTrue(a, x) asserts thata does
not have effectx inDtrue, wherex is a literal. The statement
DoesNotMakeFalse(a, x) asserts thata does not have
effect¬x in Dtrue. The statementDoesNotRelyOn(a, x)
asserts that actiona does not have preconditionx or ¬x in
Dtrue. We defineCompletePreconditions(a) as:

∀x.x /∈ preconditions(a) ⊃ DoesNotRelyOn(a, x)

2.1 Plan selection based on risk assessment
The aim of this work is to allow a planning system to make
better-informed decisions when deciding what plan to exe-
cute. More precisely, aplan selection problemis a 5-tuple
(g, C, S,D,L), whereg is a goal,C is a set of candidate
plans,S describes the current state,D is a potentially incom-
plete action model, andL is a set of locally closed world
statements. The ideal solution to this problem is to find the
plan that will achieve its goal given the actual action descrip-
tions, i.e. to findci ∈ C so thatachieves(Dtrue, S, g, ci).
The quality of a plan selection algorithm can be measured
by how frequently it chooses a plan that actually achievesg
when executed in the current state.

The next section presents a tractable algorithm for identi-
fying the risksof a plan, each of which represents a poten-
tial source of execution failure due to incompleteness of the
action model.Garland & Lesh(2002) defined the following
four types of risk for a plan composed of actionsa1, ..., an.

• POSSCLOB(ai, x) :: actionai might have the effect¬x,
and there exists actionaj , for i < j that has precondition
x inD and no action betweenai andaj has effectx inD.

• PRECOPEN(ai) :: actionai might have an unlisted pre-
condition that will not be true whenai is executed in
a0, .., an.

1The truth value of these predicates is directly specified by the
user; no inference is performed.

• PRECFALSE(ai, x) :: ai has a preconditionx in D which
will be false when executed ina0, .., an, according toD.

• UNLISTEDEFFECT(ai, x) :: the correctness of the plan
relies on an effectx of ai that is not listed inD, but might
be part ofDtrue. This means thatx is consistent with the
description ofai in D, but there is no evidence to support
the hypothesis thatx is part of the description ofai in
Dtrue.

The first two types of risks correspond to identifying when
the plan relies on the fact thatD is a good approximation to
Dtrue. In contrast, the latter two risks rely on the incom-
pleteness of the model in order to justify selecting plans that
would fail if D = Dtrue. (It is worth considering plans with
such risks in the case when none of the plans that achieveg
is justified by the action descriptions inD.)

Garland & Lesh(2002) presented a variety ofplan selec-
tion policies. Each policy takes two candidate plans,c1 and
c2, as input and returns true ifc1 is preferred toc2 based
on their risk sets. One such policy that will be used in the
examples of this paper is:

• RPw(c1, c2) :: weighted(c1) < weighted(c2) where
weighted(c) returns a real number by adding together the
number of each type of risk multiplied by a pre-defined
weight for that risk type.

Risk assessment can be incorporated with other meth-
ods for preferring plans. For example, most planners have
an implicit preference for selecting the shortest plan that
achieves the goal. See (Garland & Lesh, 2002) for a dis-
cussion of how to integrate risk assessment with other plan-
preference metrics.

Figure 1 shows a simple example designed to illustrate
how our risk analysis can prefer one ordering of plan actions
over another. In this figure, actions are surrounded by brack-
ets, with the action’s preconditions on the lower left, and the
action’s effects on the upper right.

Figure1 shows a goal that can be achieved by executing
two actions,a1 anda2, in either order. If the action model
is complete then both plans will achieve their goal. Either
plan can fail, however, if the model is incomplete. Candi-
date planC1 = [a1, a2] could fail if a2 has an effect¬r
which clobbersa1’s effect. Similarly, planC2 = [a2, a1]
could fail if a1 clobbersa2’s effect. However,C2 could also
fail if a2 has effect¬p which would clobbera1’s known pre-
condition. Thus,C2 has more POSSCLOB risks thanC1 and
RPw would preferC1 toC2.



init planC1 goal
{w} [a1]r,q

w,q[a2]s {r,s}

Risks forC1

PRECOPEN(a1)
PRECOPEN(a2)
POSSCLOB(a1, w)
POSSCLOB(a2, r)

init planC2 goal
{w} w[a3]p p[a4]r,s {r,s}

Risks forC2

PRECOPEN(a3)
PRECOPEN(a4)

Figure 2:Operator choice.C2 is preferred becauseC1 has more possible clobberings.

Risks percentile Avg # Dev. Min # Max # Number
Run t10 t20 t50 t100 of risks of risks of risks of risks of plans

Action ordering 87.6 86.2 83.1 76.7 49.4 4.3 42.0 74.0 195,254
Operator choice 85.4 83.0 79.8 74.7 72.0 7.8 55.0 115.0 341,469

Table 1: Impact of risk assessment on likelihood of successfully executing plans.

The preference forC1 overC2 is justified by imagining
what we could add toD in order to create aDtrue in which
the plans would fail. For any combination of additional con-
ditions and effects that would causeC2 to fail, there is a cor-
responding modification that would causeC1 to fail. How-
ever, in order to “match” the risk introduced by adding¬p as
an effect ofC2, we have to add both a precondition and an
effect toC1. Thus, in the absence of any LCW information,
C1 seems the safer choice. On the other hand, if the given
LCW eliminates the risks of planC2, then it becomes the
better plan to execute.

There is another class of problems that shows the bene-
fit of reasoning about the completeness of action descrip-
tions. In these problems, the plans being compared contain
alternative actions with similar effects. The most obvious
role of our techniques would be to prefer to use operators
that are completely modeled over ones that are not. In gen-
eral, though, the issues that arise in the choice of actions to
achieve the same goal (or subgoal) of a plan are the same as
those in choosing actions orderings. Figure2 shows two
plans that look equally correct if the prospect of missing
effects and preconditions is ignored, but one plan has more
risks than the other and would be preferred byRPw.

Table1 reprints empirical results that measure how use-
ful risk assessment can be for plan selection. For these
experiments, we implemented a modified version of the Fast
Forward planning system (Hoffmann & Nebel, 2001) that
exploits augmented domain descriptions to find the risks in
each generated plan. Then we generated large sets of can-
didate plans usingD, measured their risks, and determined
if they would succeed when executed usingDtrue (seeGar-
land & Lesh(2002) for details). The first run measured the
impact of risk assessment on action ordering decisions; the
second run measured the impact on operator choice deci-
sions. No LCW statements were added toD for these exper-
iments.

Table1gives statistics showing how risks and success per-
centages are related for the two experiments. Within each
row, there are four columns that show the likelihood of suc-

cessfully executing a plan drawn at random from different
subsets of the set of generated plans. For the column labelled
tk, the subset contains all plans whose number of risks are
in the lowestkth percentile of distribution (e.g.,t50 includes
all plans with fewer risks than the median number of risks).
The final five columns show general statistics about the dis-
tribution of risks in the set of generated plans.

The results show what a significant impact risk assess-
ment can have. For both runs, generating two plans and pre-
ferring the one with fewer risks will, on average, increase
the chance of success from roughly 75% to 80%. Generating
more candidates continues to provide benefits, as selecting a
plan fromt10 increase the likelihood of success to over 85%.

3 Interleaved planning and execution
The above techniques are designed to choose from a set
of plans to execute fully, given a complete model of the
initial state. We now describe how to extend these tech-
niques to make them suitable for continuous planning, i.e.,
a planner that interleaves planning and execution and solves
more than one goal during its “life time”. Of course there
are many extremely challenging problems involved in cre-
ating a robust, continuous planning and execution system;
here we focus exclusively on how a continuous planner can
take advantage of the kind of risk-analysis we have outlined
above.

As an illustrative example, suppose that a planning system
had complete information about the state of the world at time
t0 but has since executed 1,000 actionsa1, ..., a1000 in ser-
vice of various goals. While it is the only actor in the world,
it lacks a complete model of its actions. It now has a new
goalG. For simplicity, assume that there are two actionsα
andβ which achieveG. Each has one precondition, namely
pα andpβ .

The execution historya1, ...., a1000 can influence the
choice of whetherα or β is more likely to achieveG. Sup-
pose that the most recently executed action with effectpα

andpβ was, respectively,a997 anda992. It might seem that
α is a wiser choice since fewer executed actions could have



clobberedpα thanpβ . However, there are many other factors
to consider. The agent may know, for example, that actions
a993, ..., a1000 do not effectpβ . Alternatively, supposea992

has no preconditions but thata997’s precondition was estab-
lished by actiona902, and so if actionsa903...a996 clobbered
that precondition, thena997 may have not executed properly.
(And, of course,a902’s preconditions may, in turn, also be
suspect.)

Additionally, sensor information should play a role in plan
selection. For example, ifa997’s preconditions were sensed
to be true at time 995, then the planner only needs to con-
sider possible clobberings froma995 anda996.

We now present techniques that perform the kind of rea-
soning needed to make such decisions. While the formu-
lation in Garland & Lesh(2002) relied upon being given a
complete model of the initial state, our current techniques
assume initial state information is derived from sensor read-
ings. Another key aspect of our approach is that the entire
execution history does not need to be stored; all of the rele-
vant information is encoded in a compact representation.

In our formulation, sensing actions are not explicitly mod-
eled or planned for. Each atomx in the state is associated
with a virtual sensorφ(x) (there may not be a 1-1 map of
virtual to physical sensors — a single physical sensor may
detect multiple atoms or input from multiple physical sen-
sors may be “fused” to detect a single atom).φ(x) returns
either true, false, or unknown. An unknown value indi-
cates that no information aboutx is currently available. The
sensed state of the world at any time is simplyφ(x), for all
atomsx.

The system receives information from its sensors after the
execution of an action, and after the occurrence of an exter-
nal event. An external evente can be modeled like an action
and is detected by an associated virtual sensorφ(e). Thus,
an external event in the execution history can be processed
exactly like an attempted action. An external event can have
modeled effects (e.g., rain makes a robot’s gripper wet), can
have associated LCW knowledge (e.g., rain does not make
the robot’s internal circuits wet), and can have unmodeled
effects.

The agent maintains a mental state of the worldS that
differs from the sensed state of the world because of antic-
ipated, but not observed, changes to the state of the world.
For example, the mental state includes the effects of actions
that the agent has executed.S also differs from the sensed
state of the world sinceS keeps track of the risks associated
with each literalx that is true (this point is explained more
fully below).

In order to generalize our techniques, we identify a new
type of risk:

• PRECUNKNOWN(ai, x) :: ai has a precondition whose
value has never been sensed and is not an effect of
any observed external event, executed action, or planned
actionaj for j < i.

The functionFINDPLAN RISKS, shown in Figure3, pro-
duces the set of risks of a planc = a1, . . . , an, a goalg,
the current mental stateS, and a set of locally closed world

FINDACTRISKS (ai,S, L) ≡
forall literalsx in PRECONDITIONS(ai)

if UNKNOWNINSTATE(x,S)
R← R ∪ { PRECUNKNOWN(ai, x) }

else
R← R ∪ RISKSINSTATE(x,S)

if CompletePreconditions(ai) /∈ L
R← R ∪ { PRECOPEN(ai) }

return R

UPDATESTATE (ai,S, L) ≡
S ←COPYSTATE(S)
R←FINDACTRISKS(ai,S, L)
forall literalsx in S

if x ∈EFFECTS(ai)
SETTRUEINSTATE(x,S, R)

else ifDoesNotMakeFalse(ai, x) /∈ L
ADDRISKTOSTATE(x,S,POSSCLOB(ai, x))

return S

FINDPLAN RISKS (<a1, . . . , an>, g,S, L) ≡
for i = 1 to n

S ←UPDATESTATE(ai,S, L)
RiskSet← ∅
forall literalsx in g

RiskSet← RiskSet ∪ RISKSINSTATE(x,S)
return RiskSet

Figure 3: Finding risks.

statementsL.2 For each actionai in the plan,FINDPLAN -
RISKS computes the set of risksR associated with execut-
ing ai usingFINDACTRISKS. The truth value of each pre-
conditionx of ai is checked and if it is unknown, then a
PRECUNKNOWN(ai, x) is added toR; if x is true, then all
of the risks associated withx in the current mental stateS
are added tor. Also, PRECOPEN(ai) is added toR if ai’s
preconditions are not completely modeled inL.

The system’s initial mental model is simply the sensed
state, with an empty risk set for each atom. Moving forward
in time, the system updates the current mental modelS after
attempting an actionai using the procedureUPDATESTATE.
Basically, each effect ofai becomes associated with risk set
FINDACTRISKS(ai,S, L). In addition, if there are literals
x that might be clobbered byai then a POSSCLOB(ai, x) is
added to the risk set associated withx in S. In addition to the
changes to the risk sets made inUPDATESTATE, the risk set
of any literalx is cleared whenever its corresponding sensor
returns true or false.

FINDPLAN RISKS is an improved version of the algorithm
presented in (Garland & Lesh, 2002), which is inadequate
for continuous plan selection. Since it makes one forward
pass over the acts in the plan, and computes the union of
the risk sets for the preconditions of each act, this algorithm
requiresO(nmS) time, wheren is the length of the plan,m
is the number of atoms inD, andS is the size of the mental

2The pseudo-code has been stream-lined for pedagogical pur-
poses; in general, it is necessary to check for hypothesized effects,
false preconditions, and that the plan achievesg if D is complete.



S at t−3 planC1 goal

Risks forC1 at t−3

{p,¬ q } p[a−3]q q[a−2]r r[a−1]s s,p[a]t {t}

PRECOPEN(a−3)
PRECOPEN(a−2)
PRECOPEN(a−1)
PRECOPEN(a)

POSSCLOB(a−3, p)
POSSCLOB(a−2, p)
POSSCLOB(a−1, p)

S at t−3 planC2 goal

Risks forC2 at t−3

{p,¬ q } p[a−3]q q[a−2]r r[a−1]s [b]p s,p[a]t {t}

PRECOPEN(a−3)
PRECOPEN(a−2)
PRECOPEN(a−1)
PRECOPEN(a)
PRECOPEN(b)

POSSCLOB(b, s)

S at t−3 planC3 goal

Risks forC3 at t−3

{p,¬ q } p[a−3]q q[a−2]r r[a−1]s q[c]
p

s,p[a]t {t}

PRECOPEN(a−3)
PRECOPEN(a−2)
PRECOPEN(a−1)
PRECOPEN(a)
PRECOPEN(c)

POSSCLOB(a−2, q)
POSSCLOB(a−1, q)

Figure 4:Additional steps. The extra step inC2 (andC3) re-establishesp, but introduces other risks.

state at timet. S is bounded by the number of different
actions (including external events) that have occurred since
the world was last sensed completely. In the worst case,
S is bounded by the minimum of the number of possible
instantiated actions ort.

This framework can account for the passage of time in a
limited manner (there has been no need to implement this
yet). This can be done by having a virtual sensorφ(et) that
registers an “observed” external eventet everyt time units.
et has no modeled effects, so our algorithm will identify dif-
ferent risk sets depending on exactly what LCW statements
are given foret. One can use this mechanism to introduce a
POSSCLOB risk everyt time units for each literal that may
become false without being sensed.

An area for future work is to reconcile the mental model
of the state with the current observed state. This is a difficult
inference problem, even in the absence of risk assessment.
For example, imagine if an acta had an anticipated effectx
that was sensed to be false immediately before attemptinga
and true immediately aftera. It is tempting to conclude that
all of a’s known preconditions must have been true immedi-
ately before executinga, but this is only valid if one assumes
thata has no effects when any precondition is false. When
the system does have enough knowledge to infer thata suc-
cessfully executed, then each risk ina’s risk set is known
to be spurious (i.e., it is not a possible source of execution
failure), and can be safely removed from the risk set ofall
literals.

Our goal is to produce a system which considers all of
these issues when choosing which action to execute. Ideally,
as will be shown by the example in the next section, plan
selection should be repeated afteranyobservation since the
risk sets will change. This does not necessitate re-planning,
since some of the plans in the previous set of candidates will
still be viable alternatives. If re-planning is not too com-

putationally demanding, a reasonable heuristic would be to
re-plan whenever an observation differs from the expected
value.

4 Example
Imagine that it is imperative to execute actiona soon, but an
equally important consideration is thata must be success-
fully executed. The decision facing the system is whether or
not to attempta immediately, or to first execute a subplan
designed to ensure thata’s preconditions are true.

Figure4 shows a specific example of this general situation
in which the choice of which action to execute next depends
on the past execution history and sensor readings. In this
example, actiona has two preconditionsp and s. Sensor
readings taken three time units ago, i.e., at timet−3, indi-
cated thatp was true. Since then, actionsa−3, a−2, and
a−1 have been executed, which are known to establisha’s
other precondition,s, and are not known to clobberp. Fig-
ure 4 contains three plans (C1, C2, andC3) for executing
a. If risk analysis were ignored, planC1 would be preferred
becausea’s preconditions are believed to be true. The prob-
lem withC1, however, is thata−3, a−2, or a−1 might have
clobbereda’s preconditionp. PlansC2 andC3 seek to re-
establishp by alternative subplans, each of which is com-
posed of a single action.C2 relies on actionb to re-establish
p while C3 uses actionc. The advantage of usingb is that
it has no known preconditions, whilec has preconditionq
that was established att−2 and may have been clobbered by
a−2 or a−1. The disadvantage of usingb is that it might
have an unmodeled effect that clobbersa’s other precondi-
tion, s, while actionc’s effects are completely known (this
is indicated by the box aroundp) and thus could not clobber
s.

Figure4 lists the risks associated with the three plans that
would have been identified at timet−3, before executing any



of the actions. The risks associated with the plans in the
current state of the world (i.e., after executinga−1) depend
upon what has been observed sincet−3.

Each of the three candidate plans can appear to be the best
plan to execute depending on the sensed values forp andq.
If p is sensed to be true in the current state, clearlyC1 should
be preferred. In the absence of any sensor feedback after
time t−3, C2 will be preferred byRPw if POSSCLOB risks
are weighted more than half of PRECOPEN risks. Finally, if
p has not been sensed sincet−3 andq is sensed to be true
in the current state,C3 appears to be the most likely plan to
succeed because its precondition is known to be true and it
cannot clobbers.

5 Discussion and related research
This work describes one component of a complete system
for integrated planning and execution. Obviously, the sys-
tem will need to be equipped with a planner that can reason
efficiently in the face of incomplete state information. Also,
the system should improve the action descriptions when pos-
sible.

Much previous work has addressed the problem of
planning with incomplete state information and non-
deterministic or conditional effects (e.g,Kushmerick,
Hanks, & Weld (1995); Smith & Weld (1998)). This is
similar to the problem of planning with incomplete action
models in the sense that both problems are concerned with
uncertainty about the effects of actions. One important dif-
ference, however, is that non-deterministic planning systems
demand even more elaborate action descriptions than tra-
ditional planners. For example, the action descriptions are
required to describe all the different possible sets of effects
that an action might have. In contrast, our techniques can
improve planning even without any additional information,
and we provide a framework in which any additional effort
to produce LCW statements can be factored into the plan-
ning process. Further, our techniques are designed to exploit
various types of information, even statements about which
fluents an action doesnoteffect.

Additionally, the objective of work on non-deterministic
planning is usually to generate plans that are guaranteed to
succeed, or are guaranteed to succeed with some probability.
As a result, even assessing a probabilistic or conditional plan
to determine if it will succeed requires exponential compu-
tation win the length of the plan. In contrast, our methods
simply prefer to execute plans with fewer risks. Further, our
techniques are linear in the length of the plan and the size
of the state, though we do require the planner to generate
multiple plans to choose from.

Prior work has addressed the complementary problem of
improving action models between planning episodes. One
approach has been to develop knowledge acquisition sys-
tems that help domain experts convey their knowledge to
a computer. For example,Tecuciet al. (1999) present tech-
niques for producing hierarchical if-then task reduction rules
by demonstration and discussion from a human expert. A
second approach is to develop techniques for improving
action descriptions based on the observed results of execut-
ing actions (Gil, 1994; Wang, 1995; Oates & Cohen, 1996).

Our techniques are complementary since our methods are
designed to improve planning when there are incomplete
action descriptions. However, a plan selection policy must
address the classic exploration / exploitation tradeoff for a
learning system that seeks to perform at the highest possible
level over both the short run and the long run. One possi-
ble synergy between these two lines of research would be to
develop techniques for automatically learning LCW or help-
ing to elicit it from the domain experts.

Essentially, this work revisits the infamousframe problem
(McCarthy & Hayes, 1969), which motivated the traditional
completeness assumptions (Reiter, 1991). Without the com-
pleteness assumptions, it is necessary for the effects of an
action description to include all facts whose truth value does
not change as a result of executing it. The conceptual shift
we make is to a willingness to execute plans with risk of fail-
ure if the action model is incomplete. Our methods simply
prefer to execute plans with fewer risks.

6 Conclusion
This paper presented extensions toGarland & Lesh(2002)
to support continuous plan evaluation. The primary contri-
bution of this work is an improved algorithm that handles
handles sensor feedback and external events and identifies
an additional type of risk. As a result, the entire execution
history does not need to be stored; all of the relevant infor-
mation is encoded in the system’s mental state of the world.
Thus, these techniques form a time- and space- efficient plan
selection component in a complete system for integrated
planning and execution.
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