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Abstract

Belief propagation (BP) was only supposed to work for tree-like
networks but works surprisingly well in many applications involving
networks with loops, including turbo codes. However, there has
been little understanding of the algorithm or the nature of the
solutions it finds for general graphs.

We show that BP can only converge to a stationary point of an
approximate free energy, known as the Bethe free energy in statis-
tical physics. This result characterizes BP fixed-points and makes
connections with variational approaches to approximate inference.

More importantly, our analysis lets us build on the progress made
in statistical physics since Bethe’s approximation was introduced
in 1935. Kikuchi and others have shown how to construct more ac-
curate free energy approximations, of which Bethe’s approximation
is the simplest. Exploiting the insights from our analysis, we de-
rive generalized belief propagation (GBP) versions of these Kikuchi
approximations. These new message passing algorithms can be
significantly more accurate than ordinary BP, at an adjustable in-
crease in complexity. We illustrate such a new GBP algorithm on
a grid Markov network and show that it gives much more accurate
marginal probabilities than those found using ordinary BP.

1 Introduction
Local “belief propagation” (BP) algorithms such as those introduced by Pearl are

guaranteed to converge to the correct marginal posterior probabilities in tree-like
graphical models. For general networks with loops, the situation is much less clear.



On the one hand, a number of researchers have empirically demonstrated good
performance for BP algorithms applied to graphs with loops. One dramatic case is
the near Shannon-limit performance of “Turbo codes”, whose decoding algorithm is
equivalent to BP on a loopy graph [3, 10]. Other successful cases include computer
vision problems and medical diagonsis [3, 2, 12] suggesting the success of BP on
loopy graphs is not limited to coding applications. On the other hand, for other
graphs with loops, BP may give poor results or fail to converge [12].

For a general graph, little has been understood about what approximation BP
represents, and how it might be improved. This paper’s goal is to provide that
understanding and introduce a set of new algorithms resulting from that under-
standing. We show that BP is the first in a progression of local message-passing
algorithms, each giving equivalent results to a corresponding approximation from
statistical physics known as the “Kikuchi” approximation to the Gibbs free energy.
These algorithms have the attractive property of being user-adjustable: by pay-
ing some additional computational cost, one can obtain considerable improvement
in the accuracy of one’s approximation, and can sometimes obtain a convergent
message-passing algorithm when ordinary BP does not converge.

2 Belief propagation fixed-points are zero gradient points of
the Bethe free energy

For the purpose of analyzing and describing BP we assume that we are given an
undirected graphical model of N nodes with pairwise potentials (a pairwise Markov
Random Field). Any graphical model can be converted into this form before doing
inference through a suitable clustering of nodes into larger nodes [17]. Through this
transformation, one can apply all the results in this paper to arbitrary graphical
models including those with higher-order potentials. We will give explicit examples
of this in later sections.

The state of each unobserved node ¢ is denoted by x;, and we assume each unob-
served node is connected to an observed node y;. The joint probability distribution
function is given by

P(flfl;xQ: a$N|y Z H"/}m Ty Tj H"/}z .'L'uyz (1)

where 1;(x;,y;) is the local “evidence” for node i, ¢;;(x;, z;) is the compatibility
matrix between nodes ¢ and j, and Z is a normalization constant. In what follows,
we simplify notation and write ¥;(x;) as shorthand for v;(z;, y;)-

The standard BP update rules are:

mij(€;) ka” i, )i () H mpi(2) (2)
keN(i)\J
bi(w:)  ki(w) [[ muiles) 3)
kEN(3)

where k denotes a normalization constant and N (¢)\j means all nodes neighboring
node i, except j. Here m;; refers to the message that node ¢ sends to node j and
b; is the belief (approximate marginal posterior probability) at node ¢, obtained by



multiplying all incoming messages to that node by the local evidence. Similarly, we
can define the belief b;;(z;,z;) at the pair of nodes (z;,z;) as the product of the
local potentials and all messages incoming to the pair of nodes:

bij(zs, ;) = kdij(zi, x;) H M (x;) H my; () (4)

keN(i)\j lEN(H)\i
where ¢;; (i, ;) = Vi (i, ) Pi(T:)h;(x5)-
For a tree, the BP iterations converge to a unique fixed point and the beliefs
are equal to the posterior marginals b;(z;) = P(z;) (e.g. [13]). Similarly, one
can show that for a tree the pairwise beliefs are equal to the posterior marginals
bij(x;,x;) = P(zs,2;). The following claim characterizes b; and b;; for an arbitrary
graph, showing that they are equivalent to the marginal probabilities obtained in
the Bethe approximation developed in statistical physics [1].

Claim 1: Let {m;; } be a set of BP messages and let {b;;,b;} be the beliefs calculated
from those messages. Then the beliefs are fixed-points of the BP algorithm if and
only if they are zero gradient points of the Bethe free energy, Fjg:

Fﬂ({bz’jab} = _Z Z bz] Zi, T ln¢z] Zi, Ty +Z q; _1 Zb ln"pz xz)

ij Ti,Tj
+ Z Z bij(wi, z5) Inbij(zi, 5) — Z((Iz' -1) Zbi(wz’) In b;(z;)
ij Xi,Tj i Ti
(5)
subject to the normalization and marginalization constraints: » bi(z;) = 1,

> e, bij (i, 25) = bj(z;). (g; is the number of neighbors of node i.)

Proof: We add Lagrange multipliers to form a Lagrangian L: \;;(z;) is the multi-
plier corresponding to the constraint that b;;(x;,x;) marginalizes down to b;(z;),
and 1,5, ; are multipliers corresponding to the normalization constraints. The equa-
tion gp-t— = 0 gives: Inby;(ws, 2;) = In(¢i (i, 25)) + Xij (7) + Aji (i) + 73 — 1
The equation %{;i) =0 gives: (¢; —1)(Inbdi(zi) +1) = Invpi(zi) + 30 e nay Asi (@) +
Yi- Setting Aij(z;) = InJ[en(;mri(2;) and using the marginalization con-
straints, we find that the stationary conditions on the Lagrangian are equivalent
to the BP fixed-point conditions. To go in the opposite direction, if we are given
. . b .
bij, bi, Aij(z;) that cor'respond to a‘zero—‘gradlent‘ I?omt, we set m; (x]) :.%.
Because b;;, b;, A;; satisfy the stationarity conditions, m;; defined in this way must
be a fixed point of BP. Thus there is a one-to-one correpsondence between fixed-
points of BP and staionary points of the Bethe free energy. O

(Empirically, we find that stable BP fixed-points correspond to local minima of the
Bethe free energy, rather than maxima or saddle-points.)

Using the marginalization conditions and the definition of ¢(x;,z;) the Bethe free
energy can also be written:

Fa({bijbi}) = =D > bij(wi, ;) Inpij (i, x;) ZZb ;) In oy (x;)

ij Ti,Tj
+3 0D b @) nbij(wi, ) — > (0 — 1) Y bilwi) Inbi(zs)
ij T i Ti

(6)



Where does the Bethe free energy come from? We will discuss the physics intuition
behind it in section 3 but to make the formula less mysterious we now show that
it is an exact free energy when the graph is a tree. In other words, minimizing the
Bethe free energy for a tree is equivalent to performing exact inference.

The exact free energy is simply the average energy minus the entropy:
=3 " b(@)E@) + Z b(z) log b(z (7)
x

where b(x) is the “belief” in a state  and E(x) the “energy” of x motivated by
Boltzmann’s law P(z|y) = 1 e—E(@).

E(z) = —log P(zly) —log Z = — Y loghij(wi, ;) — Y _logwi(z:)  (8)
<ij> i

Note that F is (up to a constant) the KL divergence between b(z) and P(z|y) so

that F'is minimized when b(z) = P(zly).

By substituting equation 8 in the average energy we obtain:

Zb(x)E Z Z bij(zi, ;) In; (@i, x;) ZZb ;) In(x;)  (9)

ij Ti,Tj i

so that the first two terms of the Bethe free energy (eq. 6) are exactly the average
energy.

If the graph is a tree, then we can restrict the minimization to the class of b(x)
that satisfy the conditional independences implied by the graph. Such b(z) can be
written as a product of beliefs over cliques, divided by beliefs over separator sets
(see e.g. [13]). In our setting, the cliques are pairs of nodes and the separator sets
are single nodes so that:

H<i]> bij (i, wj)

[T; bi(zi) o~

If we substitute equation 10, into the expression for the negative entropy
>, b(z)Inb(x) we obtain the last two terms of the Bethe free energy (eq. 6). Thus
for a tree graph, the Bethe free energy is exact and it will be minimized when
bij (i, x;) = P(zi, x;]y) and bi(z;) = P(ws]y).

b(z) =

(10)

2.1 Special case: turbo codes

We follow the formulation of Turbo decoding presented in [11]. An unknown binary
vector u is encoded using two constituent codes, each of which is easy to decode by
itself and the results are transmitted over a noisy channel giving two observations
y1,Y2. The task of Turbo decoding is to infer the values of bits of u from the two
observations y;,ys. The decoder knows the prior distribution over u (which we
assume here is uniform) and the two conditional probabilities p;(u) = p(y;|u).

The turbo decoding algorithm iterates the following iterations:

Bitw) + k D> pi(w) ][] e;w;) (11)
wiw; =u; JFi
aw) « kS p(w) [[Bw) (12)

wiw; =u; JFi



message 1

message 2

Figure 1: The Turbo code structure. Running BP on this graph is equivalent to
the turbo decoding algorithm.

and the marginal probability over u; is approximated by:
b(ui) = ka(u;) B (u:) (13)

after the iterations have converged (or reached a maximal number of iterations).

Note that the Turbo decoding algorithm as formulated here requires summing over
an exponentially large number of states in each iteration. The reason this is possible
is that the likelihoods p;(w), p2(w) come from an easy to decode code. In other
words, there is a factorization structure on these likelihoods that correspond to a
singly-connected graph: this enables turbo decoders to compute the exponential
sum over states in linear time. Essentially, this is done by an algorithm equivalent
to BP.

As shown in [18, 8, 10], the Turbo decoding algorithm is equivalent to belief propa-
gation. In our undirected formalism, it is equivalent to iterating the BP equations
on the graph shown in figure 1. The top and bottom nodes correspond to codewords
w', w? and the nodes in the middle layer correspond to unknown bits. The poten-
tials between nodes are set to delta functions: 9 (w',u;) = 1 if the ith bit of wy,
w} is equal to u; and zero otherwise. Nodes w' and w? have observation potentials
p1(w), p2(w) corresponding to the likelihood of a codeword from one constituent

code.

When BP is run on this graph, the messages reaching u; are exactly «;, 8; used
in turbo decoding and equations 11-12 follow directly from the standard BP up-
dates [16]. The BP formalism also allows us to compute beliefs over wy,ws given
by:

bi(w) = kpl(w)Hai(wi) (14)



ba(w) = kpz(w)Hﬂz’(wi) (15)

(16)

Applying claim 1 to the graph shown in figure 1 gives a Bethe free energy that
includes joint beliefs of the form b(w’,u;), but because the energy is infinite for any
such belief for which w} # u; such beliefs must be of the form b(w’)d(w} — u;) for
the Bethe free energy to be finite. Using this fact, we can simplify the Bethe free
energy. The simplified free energy is now only a function of by (w), ba(w) and b;(u;).

Corollary 1: Let «;,3; be a set of Turbo decoding messages and let {b;(w), b;(u;)}
be the beliefs calculated from those messages. Then the beliefs are fixed-points of
the Turbo decoding algorithm if and only if they are zero gradient points of the
Bethe free energy, Fj:

= - Z by (w) In py (w) + Z by (w) In by (w (17)
- Z ba(w) In pa (w) + Z ba (w) In by (w (18)
- Z Z bi () In by (us) (19)

subject to the constraints that by (w) and be(w) marginalize down to b;(u;) for all i.

Proof: This follows from claim 1. Alternatively, one can prove it directly by adding
Lagrange multipliers A, (u;) enforces the constraint that by (w) marginalize down
to b;(u;) and Ag(u;) enforces the constraint that ba(w) marginalize down to b;(u;).
Setting Ag(u;) = In B(u;), Ao (ui) = Ina(u;) gives a set of Lagrange multipliers that
satisfy the stationarity conditions if and only a, 3 are fixed points of the turbo
decoding algorithm. O

2.2 Special case: low density parity check codes

Figure 2 shows the pairwise MRF corresponding to a low density parity check code.
We use Roman letters like 7 to denote the bits and Greek letters like o to denote
the parity checks. In this example, the bits ¢ can be in one of two states denoted by
z;, while the check bits can be in one of eight states denoted by z,. If the ith bit
is connected to the ath check node, then we use the notation z4(¢) to denote the
state that the th node should be in to correspond with the ath check node being in
the state x,. The pairwise potentials (z;, z4) are set to one if z4(i) = z; and zero
otherwise. The singleton potentials are set to ¥;(z;) = p(y;|z;) for the bit nodes
while 9, (z4) is one if z, corresponds to an even parity state and zero otherwise.
The BP update rules on this Markov graph give the Gallager decoding algorithm:

Mai(Ti) Z Ya(Ta) H Mia(Ta) (20)
Ta:Za(i)=z; kEN (a)\i
Mmio(ta) — Yi(za(i) [ meilea() (21)

BEN (i)\a



Figure 2: The pairwise Markov graph for a rate 1/3, (3,2) low density parity check
code. The nodes in the bottom layer represent unknown bits and the nodes in the
top layer represent triplets of bits. Each triplet node has an observation connected
to it that gives zero posterior probability if the triplet has odd parity. The nodes
in the bottom layer have observation nodes that correspond to noisy versions of the
unknown bits. The potentials between the bit nodes and the triplet nodes are set
to one or zero depending on whether the triplet agrees with the bit node.

bi(zi) + ile:) [[ maile:) (22)
a€N(i)

ba(®a) + (@) [[ mialza) (23)
1EN(a)

Applying claim to figure 2 will again give a Bethe free energy that depends on
joint beliefs of the form b(x,, ;) but because of the infinite energy associated with
configurations for which z, () # x;, b(z4, z;) must be of the form b(x,)d (x4 (1) — ;).
Thus we obtain a simplified Bethe free energy that depends only on b(z4) and b(z;).

Corollary 2: A set of messages and beliefs are fixed-points of the Gallager decoding
algorithm for LDPC codes if and only if they are stationary points of:

Fy = —Zzbi(mi)ln%’(fﬂi)—Zzba(ma)1n¢a(wa) (24)
+ 373 ba(@a) Inba(za) - Z(qi — 1)) bi(zi) Inbi(z;)  (25)

subject to the constraint that b,(z,) marginalize down to b;(z;) for all i € N(«).

Proof: This again follows from claim 1 or can be proven directly by adding Lagrange
multipliers A;,(z;) that enforce the constraint that b(z,) marginalize down to z;.
If we define \y;(z;) = Inmy;(x;) we find that the fixed-point equations for BP are
equivalent to the stationarity conditions for Fjz. O

2.3 Special case: factor graphs

A factor graph [9] is a bipartite graph with function nodes f; denoted by filled
squares and variable nodes x; denoted by unfilled circles. The function nodes denote



a decomposition of a ” global” function g(z) into a product of ”local” functions f,(z).
We will assume that g represents a joint distribution over the variable nodes.

As shown in [17], any factor graph can be converted into a pairwise Markov graph
that represents the same distribution. The procedure is identical to the one de-
scribed in the previous section for LDPCs: we just need to treat function nodes in
the same way we treated check nodes in the LDPC. This procedure yields a pair-
wise Markov graph so that iterating the BP equations on this graph is equivalent
to running the sum-product algorithm on the factor graph [17].

We again denote by x, the set of variables that form the domain of function f,.
As before, the BP algorithm will calculate beliefs over individual variables b;(x;)
as well as joint beliefs over all variables that form the domain of a single function
ba(z4). The Bethe free energy of the pairwise Markov graph can be simplified and
we obtain a Bethe free energy that depends only on bz;) and ba(zq)-

Corollary 3: A set of messages and beliefs are fixed-points of the sum-product
algorithm on a factor graph if and only if they are stationary points of:

Fg = —ZZba(ma)lnfa(wa) (26)
+22D bal@a)nba(za) = 3 (e —1) Y bilw) nbi(z:)  (27)

subject to the constraint that b, (z,) marginalize down to b;(x;) for all i € N(a).
Here g; is the number of functions that variable ¢ participates in.

2.4 Special case: directed graphs (Bayesian networks)

Bayesian networks are directed graphs in which the conditional probability over all
hidden nodes is written as:

P(aly) = 5 [ PlailPar(e) Pyl (28)

where Par(z;) means the parents of z;. We have assumed that every hidden node
x; has an observed node y; connected to it, and are subsuming the prior over the
root node into its local evidence.

For completeness we give Pearl’s algorithm using the formulation of Peot and Shac-
ter [14]. Each node z; computes a belief b(z;), by combining messages from its
children \j;(z;) and messages from its parents m;(x).

b(xi) = aA(zi)m(x;) (29)

where the A and 7 quantities are derived from iterating:

AMz;) + P(ys|zs) H Aji(@i) (30)
and:
w(x;) Z P(X = z|Par(z)) Hﬂ'ki(wk) (31)
Par(z) k



a b

Figure 3: Any Bayesian network can be converted into an undirected graph with
pairwise cliques by adding cluster nodes for all parents that share a common child.
a. A Bayesian network. b. The corresponding undirected graph with pairwise
cliques. A cluster node for (B,C) has been added. The potentials can be set
so that the joint probability in the undirected network is identical to that in the
Bayesian network. In this case the update rules presented in this paper reduce to
Pearl’s propagation rules in the original Bayesian network [16].



The message x; passes to its parent xj, is given by:

5 UUL=T} J#k

where ) ., _, means sum over all configurations for the parents of z; where the
value of zy, is clamped.

The message x; sends to its child z; is given by:

T4 (:L',) <~ CM7T(;C,)P(:I/,|.’L‘Z) H ik (.73,) (33)
k#j

As shown in figure 3 every directed graph can be transformed into an undirected
graph with pairwise potentials. Furthermore, as detailed in [16], running the undi-
rected BP equations on the transformed graph is equivalent to running Pearl’s
algorithm on the directed graph. We emphasize that this equivalence holds for ev-
ery iteration: every message sent by undirected BP on the transformed graph has a
corresponding message in Pearl’s algorithm on the directed graph. For example, for
nodes having a single parent \;i () is exactly m (zx). For nodes having multiple
parents, Aix () is the message passed from the “cluster node” (e.g. z7 in figure 3)
to that parent.

Just as we can use undirected BP to obtain pairwise beliefs, we can use Pearl’s
algorithm to calculate family beliefs: the joint belief over a node and its parents.
We define this belief, b(z;, Par(z;), as the product of (1) all messages coming into
z; and its parents, (2) the local messages for all nodes in the family and (3) the
conditional P(z;|Par(z;)). Thus:

b(x;, Par(z;)) = aA(x;)P(z;|Par(x;)) H i (Tp) (34)
zr€Par(z;)

Using this transformation, we can apply claim 1 and obtain the Bethe free energy for
the transformed graph. As in the case of turbo codes and LDPCs, this free energy
can be simplified because some configurations in the transformed graph have zero
probability. We can then rewrite the Bethe free energy in terms of the directed
graph, and obtain the following corollary.

Corollary 4: Let {b;i(z;)},{b(z;, Par(z;))} be a set of beliefs derived from Pearl’s
algorithm on a directed graph with arbitrary topology. The beliefs correspond to
fixed-points of Pearl’s algorithm if and only if they are constrained stationary points
of the Bethe free energy:

Fs = =Y > b Par(z:)log P(zi|Par(z;)) = Y Y b(wi) log Ply;|z:)

i z;,Par(z;) i oz
+ Z Z b(x;, Par(x;))logb(x;, Par(x;)) — Z(q, —1) Z b(x;) log b(x;)
i z;,Par(z;) i z;

(35)

The minimization is constrained so that b(z;, Par(x;)) marginalizes down to the
singleton belief b(z;) for all z; € (z;, Par(x;)). Here ¢; is the number of families



that node z; participates in, which is equal to one plus the number of children of
x; for all nonroot nodes.

2.5 Implications

The fact that Fg({bi;, b;}) is bounded below implies that the BP equations always
possess a fixed-point (obtained at the global minimum of Fj). To our knowledge,
this is the first proof of existence of fixed-points for a general graph with arbitrary
potentials (see [15] for a more proof for the special case of turbo codes).

The free energy formulation clarifies the relationship to variational approaches which
also minimize an approximate free energy [6]. For example, the mean field approx-
imation finds a set of {b;} that minimize:

Fyr({bi}) = Z Z bi(z:)b;(x;) In s (xi, x; —}—ZZb x;) [Inb;(z;) — In;(z;)]
ij Ti,Tj iz
(36)
subject to the constraint ), b;(x;) = 1.

The Bethe free energy includes first-order terms b;(z;) as well as second-order terms
bij(x;,x;), while the mean field free energy uses only the first order ones. The BP
free energy is exact for trees while the mean field one is not. Furthermore the
optimization methods are different: typically Fasr is minimized directly in the
primal variables {b;}: it is easy to define local updates for b;(z;) that minimize
Fyr at every iteration. In contrast, the BP iterations work with the messages
which are combinations of the dual variables {);;(z;)}. The BP iterations do not
necessarily minimize Fj at every iteration: in fact, for intermediate iterations the
bi;,b; calculated using BP do not satisfy the marginalization constrains.

Kabashima and Saad [19] have previously pointed out the correspondence between
BP and the Bethe approximation (expressed using the TAP formalism) for some
specific graphical models with random disorder. Our proof answers in the affirma-
tive their question about whether there is a “deep general link between the two
methods.” [19]

3 Kikuchi Approximations to the Free Energy

The Bethe approximation, for which the energy and entropy are approximated by
terms that involve at most pairs of nodes, is the simplest version of the Kikuchi
“cluster variational method.” [7, 4, 5] In a general Kikuchi approximation, the en-
ergy(or entropy) is approximated as a sum of the energies(or entropies) of basic clus-
ters of nodes, minus the energies(or entropies) of over-counted cluster intersections,
minus the energies(or entropies) of the over-counted intersections of intersections,
and so on.

Figure 4a shows an example. To obtain the Bethe approximation, we use as basic
clusters the set of all pairs of nodes. The Bethe entropy is the sum of all entropies
in the basic clusters minus the entropies of over-counted cluster intersections.

H[g(.’l}) = H($12) +H(Z’23) +H(Z’45) +H(.Z'56) (37)
+H($14) + H(SE'25) + H($36) (38)



Figure 4: Two examples for the Kikuchi approximations. See text for details.

—H(z1) — H(z3) — H(ze) — H(z4) (39)

where we denote by H(z;) the entropy of z;: H(z;) = — ), P(z;)InP(z;). Note
that this is exactly the Bethe entropy used in claim 1. Intuitively, because x
appears in two clusters, its entropy was over-counted so it is subtracted once. The
node, T2, on the other hand, appears in three clusters, so its entropy is subtracted
twice.

A different Kikuchi approximation for the same quantity can be obtained when we
use quartets of nodes as the basic clusters. The entropy in figure 4a would then be
approximated as:

Hy,(x) = H(x1245) + H(w2356) — H(w25) (41)

Here nodes z, and z5 appear together in two clusters so we subtract their entropy.

Figure 4b shows a more generic situation. If we again use quartets of nodes as the
basic clusters we have:

Hg, = H(21245) + H(w2356) + H(24578) + H(T5689)
—H(.’L'Qs) — H(.Z'45) — H(.Z'sﬁ) — H(.Z'sg)
+H(.Z'5) (42)

Here the nodes z2 =5 appear together in two clusters so we subtract their entropy
once and similarly for 4,5 5,6 and 5,8. But once we do that we see that node x5
appears in four clusters and its entropy is subtracted four times (in four different
pairs of nodes) so we need to add the entropy of node x5 again.

The Kikuchi average energy is based on a similar intuition. Define the energy of a
region by:

E.(z,) = —IHH%g‘(Iﬂi;i’fJ’) - IHH%(%) = —In¢(xr) (43)

where the products are over all nodes or pairs of nodes that are contained in region
r. And denote by E(x,;b) the average of the energy with respect to the belief

E(zr;b) = Y2, br(z:)E(z,). Then the average energy of figure 4b using quartets



of nodes is:

Ex, = E(z1215) + E(z2356) + E(z4578) + E(w5689)
—E(225) — E(z45) — E(x356) — E(258)

(where we have suppressed the dependence of E on b)

For a general graph, let R be a set of regions that include some chosen basic clus-
ters of nodes, their intersections, the intersections of the intersections, and so on.
The choice of basic clusters determines the Kikuchi approximation—for the Bethe
approximation, the basic clusters consist of all linked pairs of nodes. Let z, be the
state of the nodes in region r and b,.(z,) be the “belief” in z,.

The Kikuchi free energy is

Fg = Z Cr (Z br(wr)Er (xr) + Z bT(wT) lOg bT(xT)) (45)

TER Tr

where ¢, is the over-counting number of region r, defined by: ¢, = 1— Zsesuper(r) Cs
where super(r) is the set of all super-regions of r. For the largest regions in R,
¢ = 1. The belief b,.(a;) in region r has several constraints: it must sum to one
and be consistent with the beliefs in regions which intersect with r. In general,
increasing the size of the basic clusters improves the approximation one obtains by
minimizing the Kikuchi free energy.

4 Generalized belief propagation (GBP)

Minimizing the Kikuchi free energy subject to the constraints on the beliefs is
not simple. Nearly all applications of the Kikuchi approximation in the physics
literature exploit symmetries in the underlying physical system and the choice of
clusters to reduce the number of equations that need to be solved from O(N) to
O(1). But just as the Bethe free energy can be minimized by the BP algorithm, we
introduce a class of analogous generalized belief propagation (GBP) algorithms that
minimize an arbitrary Kikuchi free energy. These algorithms represent an advance
in physics, in that they open the way to the exploitation of Kikuchi approximations
for inhomogeneous physical systems.

There are in fact many possible GBP algorithms which all correspond to the same
Kikuchi approximation. We present a “canonical” GBP algorithm which has the
nice property of reducing to ordinary BP at the Bethe level. We introduce messages
mrs(zs) between all regions r and their “direct sub-regions” s. (Define the set
subg(r) of direct sub-regions of r to be those regions that are sub-regions of r
but have no super-regions that are also sub-regions of r, and similarly for the set
super,(r) of “direct super-regions.”) It is helpful to think of this as a message
from those nodes in r but not in s (which we denote by r\s) to the nodes in s.
Intuitively, we want messages to propagate information that lies outside of a region
into it. Thus, for a given region r, we want the belief b,.(z,) to depend on exactly
those messages m,+ ¢ that start outside of the region r and go into the region r. We
define this set of messages M(r) to be those messages m, s (zs) such that region
r'\s’ has no nodes in common with region r, and such that region s’ is a sub-region



of r or the same as region r. We also define the set M(r,s) of messages to be all
those messages that start in a sub-region of r and also belong to M(s), and we
define M (r)\M(s) to be those messages that are in M (r) but not in M (s).

The canonical generalized belief propagation update rules are:

Mrs < «© Zwr\s(xr\s) H My gt / H Myprg (46)

Tr\s M g1t EM(1)\ M () Mt gt EM(7,8)

be + ap(z,) [ mes (47)

My €M(r)

where for brevity we have suppressed the functional dependences of the beliefs and
messages. The messages are updated starting with the messages into the smallest
regions first. One can then use the newly computed messages in the product over
M (r, s) of the message-update rule. Empirically, this helps convergence.

Claim 2: Let {m,s(zs)} be a set of canonical GBP messages and let {b.(z,)} be
the beliefs calculated from those messages. Then the beliefs are fixed-points of
the canonical GBP algorithm if and only if they are zero gradient points of the
constrained Kikuchi free energy Fi.

We prove this claim by adding Lagrange multipliers: <, to enforce the normal-
ization of b, and A.s(xs) to enforce the consistency of each region r with all of
its direct sub-regions s. This set of consistency constraints is actually more than
sufficient, but there is no harm in adding extra constraints. We then rotate to
another set of Lagrange multipliers u,s(z5) of equal dimensionality which enforce a
linear combination of the original constraints: u.s(xs) enforces all those constraints
involving marginalizations by all direct super-regions ' of s into s except that of
region r itself. The rotation matrix is in a block form which can be guaranteed
to be full rank. We can then show that the p.s(zs) constraints can be written
in the form pi,4(25) 3=,/ c p(y,.) & 2o, , D(7) Where R(p,,) is the set of all regions
which receive the message s in the belief update rule of the canonical algorithm.
We then re-arrange the sum over all p’s into a sum over all regions, which has

the form }° cper 32, br(@r) X2, cnr(r) Hrs(2s). (M(r) is a set of piy in one-to-
one correspondence with the m, s in M(r).) Finally, we differentiate the Kikuchi
free energy with respect to b.(r), and identify p.s(zs) = Inm,s(z,) to obtain the
canonical GBP belief update rules, Eq. 47. Using the belief update rules in the
marginalization constraints, we obtain the canonical GBP message update rules,
Eq. 46.

Equation 46 may appear to be complicated, but it can be simply derived by
marginalizing equation 47, which is really the key generalized belief propagation
equation. Intuitively, equation 47 simply says that the belief in a region depends
on the product of all the compatibility matrices and evidence that are internal to
the region and all the messages that originate outside of the region and end inside
it.

It is clear from this proof outline that other GBP message passing algorithms which
are equivalent to the Kikuchi approximation exist. If one writes any set of con-
straints which are sufficient to insure the consistency of all Kikuchi regions, one can
associate the exponentiated Lagrange multipliers of those constraints with a set of
messages.



Figure 5: a. A simple graph. b,c,d Three ways of clustering the graph. Running
ordinary BP on the first two clusterings (b,c) is equivalent to a Kikuchi approxima-
tion, but not for the third clustering (d)

5 Clustered Belief Propagation

In the GBP algorithm, the messages take the form of probability distributions over
clusters of nodes, whereas in ordinary BP the messages take the form of probability
distributions over single nodes. A different way of deriving a BP algorithm in which
messages are distributions over cluster of nodes is illustrated in figure 5. We first
group cluster of nodes into “super-nodes” and then run ordinary BP on the clustered
graph. When the clusters are large enough so that the cluster graph is a tree, this
is just Pearl’s method of clustering for exact inference in any graphical model [13]
(equivalent to the junction tree algorithm). When the cluster graph still has loops
in it, however, the beliefs are not exact. How are these beliefs related to the Kikuchi
approximation?

The simplest case to analyze is when the clusters are non-overlapping as in figure 5b.

Corollary 5: Let G° be a graph obtained by clustering nodes in a graph G. Assume
the potentials in G° are set so that the joint distribution defined by G° is equivalent
to that defined by G. If the clusters are non-overlapping then the beliefs calculated
by running BP on G¢ are the same as those calculated by a Kikuchi approximation
on G where the regions are all pairs of nodes in G°.

This corollary follows directly from claim 1.

When the clusters are overlapping, the situation is more complicated. When we run
BP on the graph in figure 5¢ we find that the beliefs are indeed the same as those



calculated using the Kikuchi approximation with these clusters as basic regions.
When we run BP on the graph in figure 5d, however, we obtain beliefs that are
quite different from the Kikuchi beliefs.

One difference between the clusters in figure 5¢ and these in figure 5d has to do
with the overcounting numbers c¢,.. In figure 5¢, the Kikuchi entropy is of the form:

H = H(zi245) + H(w2356) + H(x5680) + H(x478) (48)
—H($25) - H(.CL'56) - H(;Es) - H(.CL'4) (49)

thus except for the basic clusters, no other region has positive double counting
number. This property is not shared by the clusters in figure 5d, however. As
equation 42 shows, the region corresponding to the single node z5 has positive
double counting number.

Claim 3: Let R be a set of Kikuchi regions (basic clusters, intersections, intersection
of intersections, etc.) with double counting numbers c,. If ¢, > 0 only for the basic
clusters, then the beliefs calculated using the Kikuchi approximation are identical
to those that would be calculated using ordinary BP on a graph G¢ whose nodes
are the basic clusters.

Proof: To construct the graph G¢ we add edges between two regions rq, 12 depending
on the double counting number of their intersection ¢, for s = r1 Nry. If ¢ = —1 we
simply connect the corresponding two regions. If ¢; < —1 (i.e. there are multiple
pairs of regions that have s as their intersection) we choose |cs| such pairs and
connect them. We choose the edges so that all regions whose intersection is s form
a connected graph. The compatability matrices ¥, ,, (%, ,Zr,) are § functions
that require z,, and z,, to agree on the value of z;. Because of this form of
the ¥ functions, the message from r1 to ro depends only on the value of their
intersection zs;. We now add Lagrange multipliers. If 71,72 are connected in the
graph we add two lagrange multipliers Ay, ,,(8), Ar,,r, (25). The multiplier Ay, ,,(s)
enforces the constraint that b(x,,) marginalize down to b(xs). If we now define,
Arg,ri (%s) = Inmy, » (25) we find that the stationarity conditions on the free energy
and the fixed point equations for the messages are equivalent. O

A simple consequence of claim 3 is that when a set of Kikuchi regions satisfies the
condition of claim 3 and the graph G° is a tree, then the Kikuchi beliefs are exact.

5.1 Normalized Clustered Belief Propagation

In figure 5d, all clusters contain the node 5. Since the clusters are connected in a
loop, and the potentials between clusters are § functions, running BP on figure 5d
will lead to “infinite double counting”: any evidence a node has about x5 will come
back to it as the messages go around the loop. So if any of the nodes has evidence
about x5 the only fixed-points of BP are these where b(z5) has all its mass centered
on one value of z5. This suggests that running BP on such graphs is a bad idea.

Normalized clustered BP is an algorithm that fixes this type of “infinite double
counting” and turns out to give the same answer as the Kikuchi approximation.
Figure 6 illustrates the algorithm. It is equivalent to ordinary BP except that some
edges have a “normalizer” module attached to them. As in ordinary clustered BP,
messages along each edge correspond to probability distributions over a set of nodes.
The idea of the normalizer module is to correct for the double counting of a subset



Figure 6: An illustration of the normalized clustered BP algorithm. It is identical to
ordinary BP but along some edges a “normalizer” module is added (denoted by an
arrow and the letter ’N’). This algorithm is equivalent to the Kikuchi approximation.

of these nodes. In figure 6a there is just one normalizer module and it corrects for
It = Ts-

Nodes calculate their outgoing messages based on incoming messages as in normal
BP. We call these messages m?j (xj). In the setting of clustered BP, these messages

9.(s) where

are functions of the intersection between r; and r; so we denote them m;;

s is the intersection.

For edges that do not have normalizer modules, these outgoing messages simply
become the ingoing messages m;; = m?j. For edges that have normalizer modules,
the messages m;; and mj; are both multiplied by a correction factor that is a
function of x4

mij(zs) = ng(e)m(es) (50)
mji(zs) = ni(e)mi;(2s) (51)
(52)
with: .
nij(ze) = (53)

\/Zws\wt m(i)j ($S)m?z' (z5)

Claim 4: Let R be a set of Kikuchi regions (basic clusters, intersections, intersection
of intersections) with double counting numbers ¢,. If ¢, > 0 only for the basic clus-
ters or for intersections of intersections of basic clusters, then the beliefs calculated
using the Kikuchi approximation are identical to those that would be calculated
using normalized BP on a graph G° whose nodes are the basic clusters.

Proof: We construct the graph in the same way as in claim 3. For every intersection
of intersection ¢ that has a a positive ¢; we add ¢; normalizer module on edges whose
intersection contains ¢;. We use the same Lagrangian as in claim 3 but correspond-
ing to each normalizer module we add a Lagrange multiplier -, ,. (z;) that enforces
the constraint that b(x,) (with z, the intersection of z,,,z,;) marginalize down to
b(x¢). We now define v,, . (x¢) = Inn;;(z¢) with n(z;) from equation 53 and A;; as
in the proof of claim 3. We find that the stationarity conditions on the free energy
and the fixed point equations for the messages are equivalent. O



6 Application to Specific Lattices

We illustrate the canonical GBP algorithm for the Kikuchi approximation of over-
lapping 4-node clusters on a square lattice of nodes. Figure 7 (a), (b), (c) illustrates
the beliefs at a node, pair of nodes, and at a cluster of 4 nodes, in terms of messages
propagated in the network. Vectors are the single index messages also used in ordi-
nary BP. Vectors with line segments indicate the double-indexed messages arising
from the Kikuchi approximation used here. These can be thought of as correction
terms accounting for correlations between messages that ordinary BP treats as in-
dependent. (For comparison, Fig. 7 (d), (e), (f) shows the corresponding marginal
computations for the triangular lattice with all triangles chosen as the basic Kikuchi
clusters).

We find the message update rules by equating marginalizations of Fig. 7 (b) and
(c) with the beliefs in Fig. 7 (a) and (b), respectively. Figure 8 (a) and (b) show
(graphically) the resulting fixed point equations. The update rule (a) is like that for
ordinary BP, with the addition of two double-indexed messages. The update rule
for the double-indexed messages involves division by the newly-computed single-
indexed messages. Fixed points of these message update equations give beliefs that
are stationary points (empirically minima) of the corresponding Kikuchi approxi-
mation to the free energy.

Tl Tl VAN I
(b) (©) () (e)

Figure 7: Marginal probabilities in terms of the node links and GBP mes-
sages. For (a) node, (b) line, (c) square cluster, using a Kikuchi ap-
proximation with 4-node clusters on a square lattice.  E.g., (b) depicts
(a special case of Eq. 47, written here using node labels): bgp(zq,xp) =
av,[}ab(:ca,xb)¢a(;va)v,[}b(wb)M[fMgM;Mj,fM{M,foMg,’}, where super and sub-
scripts indicate which nodes message M goes from and to. (d), (e), (f): Marginal
probabilities for triangular lattice with 3-node Kikuchi clusters.

Figure 8: Graphical depiction of message update equations (Eq. 46; marginal-
ize over nodes shown unfilled) for GBP using overlapping 4-node Kikuchi
clusters.  (a) Update equation for the single-index messages: M!(z,) =
ay,, ()b (Ta, ) M M MIMPMER. (b)) Update equation for double-
indexed messages (involves a division by the single-index messages on the left hand
side).
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7 Experimental Results

Ordinary BP is expected to perform relatively poorly for networks with many tight
loops, conflicting interactions, and weak evidence. We constructed such a network,
known in the physics literature as the square lattice Ising spin glass in a random
magnetic field. The nodes are on a square lattice, with nearest neighbor nodes
exp(Jij)  exp(=Jij) )
exp(—Jij) exp(J;;)
and local evidence vectors of the form ; = (exp(h;);exp(—h;)). To instantiate a
particular network, the J;; and h; parameters are chosen randomly and indepen-
dently from zero-mean Gaussian probability distributions with standard deviations
J and h respectively.

connected by a compatibility matrix of the form v;; =

The following results are for n by n lattices with toroidal boundary conditions and
with J = 1, and h = 0.1. This model is designed to show off the weaknesses
of ordinary BP, which performs well for many other networks. Ordinary BP is a
special case of canonical GBP, so we exploited this to use the same general-purpose
GBP code for both ordinary BP and canonical GBP using overlapping square four-
node clusters, thus making computational cost comparisons reasonable. We started
with randomized messages and only stepped half-way towards the computed values
of the messages at each iteration in order to help convergence. We found that
canonical GBP took about twice as long as ordinary BP per iteration, but would
typically reach a given level of convergence in many fewer iterations. In fact, for
the majority of the dozens of samples that we looked at, BP did not converge at
all, while canonical GBP always converged for this model and always to accurate
answers. (We found that for the zero-field 3-dimensional spin glass with toroidal
boundary conditions, which is an even more difficult model, canonical GBP with
2x2x2 cubic clusters would also fail to converge).

For n = 20 or larger, it was difficult to make comparisons with any other algorithm,
because ordinary BP did not converge and Monte Carlo simulations suffered from
extremely slow equilibration. However, generalized belief propagation converged
reasonably rapidly to plausible-looking beliefs. For small n, we could compare with
exact results, by using Pearl’s clustering method on a chain of n by 1 super-nodes.
To give a qualitative feel for the results, we compare ordinary BP, canonical GBP,
and the exact results for an n = 10 lattice where ordinary BP did converge. Listing
the values of the one-node marginal probabilities in one of the rows, we find that
ordinary BP gives (.0043807, .74502, .32866, .62190, .37745, .41243, .57842, .74555,
.85315, .99632), canonical GBP gives (.40255, .54115, .49184, .54232, .44812, .48014,
51501, .57693, .57710, .59757), and the exact results were (.40131, .54038, .48923,
.54506, .44537, .47856, .51686, .58108, .57791, .59881).
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