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We seek a learning-based algorithm that applies to various low-level vision

problems. For a given problem, we want to �nd the scene interpretation that

best explains image data. Specializing to the optical 
ow problem, we may

want to infer the projected velocities (scene) which best explain two consecutive

image frames (image).

We use synthetic data to generate examples of pairs images with their corre-

sponding scene interpretation, the true projected velocities (optical 
ow). From

these data, we learn candidate scene explanations for local image regions, and

derive a compatibility function between neighboring scene regions. Given new

image data, we propagate beliefs in a Markov network to infer the underlying

optical 
ow. This yields an eÆcient method to infer low-level scene interpreta-

tions.

We �rst present the results of this method for a toy world of irregularly

shaped blobs. Then we extend the technique to function on more realistic im-

ages, showing reasonable results.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c
 Mitsubishi Electric Information Technology Center America, 2000

201 Broadway, Cambridge, Massachusetts 02139



1. First printing, TR2000-32, Sept., 2000

� John Haddon's aÆliation:

Dept. Electrical Engineering and Computer Science

387 Soda Hall

University of California

Berkeley, CA 94720-1776

� Egon Pasztor's present address:

MIT Media Lab

20 Ames St.

Cambridge, MA 02139



Learning Motion Analysis

William T. Freeman� John Haddony Egon C. Pasztorz

September 15, 2000

Abstract

We seek a learning-based algorithm that applies to various low-level

vision problems. For a given problem, we want to �nd the scene inter-

pretation that best explains image data. Specializing to the optical 
ow

problem, we may want to infer the projected velocities (scene) which best

explain two consecutive image frames (image).

We use synthetic data to generate examples of pairs images with their

corresponding scene interpretation, the true projected velocities (optical


ow). From these data, we learn candidate scene explanations for local im-

age regions, and derive a compatibility function between neighboring scene

regions. Given new image data, we propagate beliefs in a Markov network

to infer the underlying optical 
ow. This yields an eÆcient method to infer

low-level scene interpretations.

We �rst present the results of this method for a toy world of irregularly

shaped blobs. Then we extend the technique to function on more realistic

images, showing reasonable results.

1 Introduction

The fundamental task of computer vision is the interpretation of images|what

can we deduce about the world given one or more images of it? This understand-

ing can be either at a high level|recognizing Albert Einstein, or identifying a

chair|or at a low level|interpreting line drawings, estimating motion, or ex-

trapolating resolution. The input is image data, which can be either a single

image, or a collection of images over time. From that, for low-level vision prob-

lems, we want to estimate an underlying scene, which could be 3-dimensional

shape, optical 
ow, re
ectances, or high resolution detail. We will focus on

low-level scene representations like these that are mapped over space. Reliable
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solutions to these vision tasks would have many applications in searching, edit-

ing, and interpreting images. Machine solutions might even give insight into

biological mechanisms.

Much research has addressed these problems, providing important founda-

tions. Because the problems are under-determined, regularization and statistical

estimation theory are cornerstones (for example, [21, 26, 43, 34, 37, 28]). Un-

fortunately, solutions to these problems are often intractable; at best, they can

be unreliable or slow. Often, the prior statistical models used are made up or

tweaked by hand. Various image interpretation problems have de�ed general-

ization from initial simpli�ed solutions [38, 2, 36].

In part to address the need for stronger models, researchers have analyzed

the statistical properties of the visual world. Several groups derived V1-like

receptive �elds from ensembles of images [30, 4]; Simoncelli and Schwartz [35]

accounted for contrast normalization e�ects by redundancy reduction. Li and

Atick [1] explained retinal color coding by information processing arguments.

Researchers have developed powerful methods to analyze and synthesize realis-

tic textures by studying the response statistics of V1-like multi-scale, oriented

receptive �elds [18, 10, 43, 34]. These methods may help us understand the

early stages of image representation and processing in the brain.

Unfortunately, they don't address how a visual system might interpret im-

ages. To do that, it is necessary to collect statistics relating images with their

underlying scene interpretations. For natural scenes, this data is diÆcult to

collect, since it involves gathering ground truth data of the scene attributes to

be estimated, which is often not readily available in real-world situations.

A useful alternative is to use computer graphics to generate and render syn-

thetic worlds, where every attribute is known, and record statistics from those.

Several researchers have done so: Kersten and Knill studied linear shading and

other problems [25, 24]; Hurlbert and Poggio trained a linear color constancy

estimator [20]. Unfortunately, the simpli�ed (usually linear) models which were

used to obtain tractable results limited the usefulness of these methods.

Our approach is to use general statistical models, but to make the method

tractable by restricting ourselves to local regions of images and scenes. We follow

a learning-based approach, and use Markov networks to form models of image

rendering and the underlying scene structure.

We believe that a visual system can correctly interpret a visual scene if it

models (1) the probability that any local scene patch generated the local image

patch, and (2) the probability that any local scene patch is the neighbor to any

other. The �rst probabilities allow making scene estimates from local image

data, and the second allow these local estimates to propagate. This approach

leads to a Bayesian method for low level vision problems, constrained by Markov

assumptions. We have applied this method to a number of problems, including

that of extrapolating high-resolution from low-resolution images [12]. (This is

the same problem as that addressed in the chapter by Papageorgiou, Girosi, and

Poggio, using a di�erent approach). Here, we focus on the problem of optical




ow estimation|given a pair of images from a moving scene, infer the projected

velocities of the objects moving in the image.

2 Markov network

We place the image and scene data in a Markov network [31, 15]. We break

the images and scenes into localized patches where image patches connect with

underlying scene patches; scene patches also connect with neighboring scene

patches, Fig. 1. (In general, the neighbor relationship can be with regard to

position, scale, orientation, etc. Here, we consider neighbors in position and

scale). This forms a network of scene nodes, each of which may have an associ-

ated observation.

Figure 1: Markov network for vision problems. Observations, y, have under-

lying scene explanations, x. Connections between nodes of the graphical model

indicate statistical dependencies.

Referring to Fig. 1, the Markov assumption asserts that complete knowledge

of node xj makes nodes xi and xk independent, i.e. P (xi; xkjxj) = P (xijxj)P (xk jxj).

We say xi and xk are conditionally independent given xj .
1 The Markov assump-

tion also implies that P (xijxj ; xk) = P (xijxj). This lets us model a complicated

spatial probability by a network of (tractable) probabilities governing local re-

lationships.

To apply a Markov network to vision problems, we need to �rst learn the

parameters of the network from a collection of training examples. Then, given

new image data, we infer the corresponding scene.

3 Belief propagation derivation

3.1 Inference in networks without loops

For networks without loops, the Markov assumption leads to simple \message-

passing" rules for computing the Maximum A Posteriori (MAP) and Minimum

1Note that, in general, the random variables x and y may be vector-valued; for notational

convenience, we drop the vector symbol.



Mean Squared Error (MMSE) estimates [31, 40, 22]. To derive these rules,

we �rst write the MAP and MMSE estimates for xj at node j by marginalizing

(MMSE) or taking the maximum (MAP) over the other variables in the posterior

probability:

x̂
MMSE
j =

Z
xj

xjdxj

Z
all xi;i6=j

P (x; y) dx (1)

x̂
MAP
j = argmax

xj
max

all xi;i6=j
P (x; y) (2)

y is the observed image data.

For a Markov random �eld, the joint probability over the scenes x and images

y can be written as [5, 15, 14]:

P (x; y) =
Y

neighboring i;j

	(xi; xj)
Y
k

�(xk ; yk); (3)

where we have introduced pairwise compatibility functions, 	 and �, described

below. The factorized structure of Eq. (3) allows the marginalization and max-

imization operators of Eqs. (1) and (2) to pass through compatibility function

factors with unrelated arguments. For the example network in Fig. 1, we have

x̂
MAP
1 = argmax

x1
max
x2

max
x3

P (x1; x2; x3; y1; y2; y3)

= argmax
x1

max
x2

max
x3

�(x1; y1)�(x2; y2)�(x3; y3)	(x1; x2)	(x2; x3)

= argmax
x1

�(x1; y1)

max
x2

	(x1; x2)�(x2; y2)

max
x3

�(x3; y3)	(x2; x3) (4)

Each line of Eq. (4) is a local computation involving only one node and

its neighbors. The analogous expressions for x̂MAP
2 and x̂

MAP
3 use similar local

calculations. Iterating those calculations lets each node j compute x̂
MAP
j from

the messages passed between nodes.

Assuming a general network without loops, Eqs. (1) and (2) can be computed

by iterating the following steps [31, 40, 22]. The MAP estimate at node j is

x̂
MAP
j = argmax

xj
�(xj ; yj)

Y
k

M
k
j (5)

where k runs over all scene node neighbors of node j. M
k
j is the message sent

from node k to node j. We calculate Mk
j from:

M
k
j = max

xk
	(xk; xj)�(xk ; yk)

Y
l6=j

~M l
k (6)



where ~M l
k is M

l
k from the previous iteration. The initial ~M l

ks are vectors of

all 1's. After at most one iteration of Eq. (6) per scene node variable, Eq. (5)

gives the desired optimal estimate, x̂MAP
j . The MMSE estimate, Eq. (2), has

analogous formulae, with the maxxk of Eq. (6) replaced by
R
xk
, and argmaxxj

of Eq. (5) replaced by
R
xj

xj . For linear topologies, these propagation rules are

equivalent to standard Bayesian inference methods, such as the Kalman �lter

and the forward-backward algorithm for Hidden Markov Models [31, 28, 39,

22, 13]. Weiss showed the advantage of belief propagation over regularization

methods for several 1-d problems [39]; with the expectation of similar bene�ts,

we apply belief propagation to our 2-d problems.

3.2 Networks with loops

In a Markov network like Figure 3, there are loops where messages can pass

from node to node and return to the original node. This unfortunately means

that the message passing algorithm presented above is not exactly correct.

Some theoretical justi�cations exist for using the message passing algorithm

for networks with loops, however. In [41], it is shown that the MMSE rules give

the correct means, but underestimate the variance for Gaussian distributions.

For MAP rules, for arbitrary distributions, if the algorithm converges, it must

converge to at least a local maximum of the posterior. [42] shows that the MMSE

belief propagation equations are equivalent to the stationarity conditions for the

Bethe approximation to the \free energy" of the network. This suggests that

it might be acceptable to use message passing, ignoring the fact that there are

loops present; and indeed, experiments give good results using this approach

[27, 40].

Belief propagation Network topology

algorithm no loops arbitrary topology

MMSE rules MMSE, correct posterior marginal probs. For Gaussians, correct means, wrong covs.

MAP rules MAP Local max. of posterior, even for non-Gaussians.

Table 1: Summary of results from [41] regarding belief propagation after con-

vergence.

4 Motion

The image analysis problem which we focus on here is that of estimating the

optical 
ow between a pair of images. There are many existing techniques for

computing optical 
ow from the di�erences between the two frames (e.g. [19, 6,

28]). We applied our method for learning low-level vision to this problem to show

results on a well-studied problem. There have been many related applications



of Markov networks to vision, in the form of Markov random �elds [15, 32, 14,

24, 6, 28, 26, 33]. For other learning or constraint propagation approaches in

motion analysis, see [28, 29, 23].

We examined two classes of scene|�rst, a \blobs world", in which planar

blobs translate in the plane; and then, more realistic images generated using a

3D rendering package. In both cases, the \image" consists of two concatenated

image frames from sequential times. The \scene" is the corresponding projected

velocities of the moving objects in the world.

4.1 Blobs world

In the blobs world, the training images were randomly generated moving, irreg-

ularly shaped blobs, as typi�ed by Fig. 2 (a). The background was a random

shade of gray, which yielded a range of contrasts with the blobs. Each blob was

moving in a randomized direction, at some speed between 0 and 2 pixels per

frame.

We represented both the images and the velocities in 4-level Gaussian pyra-

mids [8], to eÆciently communicate across space. Each scene patch then ad-

ditionally connects with the patches at neighboring resolution levels. Figure 2

shows the multiresolution representation (at one time frame) for images and

scenes.2 Figure 3 shows the corresponding Markov network for the scene nodes.

(Each scene node connects to an observation node, not shown, at the corre-

sponding scale and position). Luettgen et al [28] use a related multi-resolution

Markov model to analyze motion, with exact inference. We use approximate

inference, but use a more general model, allowing non-Gaussian statistics and

Markov network connections between nodes at the same resolution level, which

avoids discontinuities at quad-tree pyramid boundaries.

We applied the training method and propagation rules to motion estimation,

using a vector code representation [16] for both images and scenes. We wrote a

tree-structured vector quantizer, to code 4 by 4 pixel by 2 frame blocks of image

data for each pyramid level into one of 300 codes for each level. We also coded

scene patches into one of 300 codes. Figure 2 shows an input test image, (a)

before and (b) after vector quantization. The true underlying scene, the desired

output, is shown at the right, (a) before and (b) after vector quantization.

4.1.1 Learning

For the blobs world problem, we used a di�erent factorization of the posterior

probability than Eq. (3), based on repeated applications of the rule P (a; b) =

P (ajb)P (b). This factorization, described in [11, 12], yields very similar belief

2To maintain the desired conditional independence relationships, we appended the image

data to the scenes. This provided the scene elements with image contrast information, which

they would otherwise lack.



Figure 2: (a) First of two frames of typical image data (in Gaussian pyramid).

We observe the image at four di�erent spatial scales. The blob is undergoing

uniform translation in a random direction. (b) We represent the input frames by

a collection of vector quantized pairs of image patches. (c) The true optical 
ow

scene information that we hope to recover. (d) The system can only describe the

estimated scene by a set of vector quantized patches of optical 
ow. Large arrow

added to show small vectors' orientation. The goal is to estimate (c) from (a),

viewed over two time steps. In our vector quantized representation, the best we

can do is to estimate (d) from (b), viewed over two time frames. Figure 6 shows

the velocity �eld estimated by our algorithm.

propagation rules as Eq. (6), using compatibility functions learned from image-

scene and scene-scene co-occurance statistics. The update and estimation rules

are:

M
k
j = maxxkP (xkjxj)P (ykjxk)

Y
l6=j

~M l
k; (7)

xjMAP = argmaxxjP (xj)P (yj jxj)
Y
k

M
k
j : (8)

where k runs over all scene node neighbors of node j. While the expression for

the joint probability does not generalize to a network with loops, we nonetheless

found good results for the motion estimation problem using these update rules.

During learning, we presented approximately 200,000 examples of di�erent

moving blobs, some overlapping, of a contrast with the background randomized

to one of 4 values. Using co-occurence histograms, we measured the statistical

relationships that embody the algorithm: P (x), P (yjx), and P (xnjx), for scene

xn neighboring scene x. Figures 4 and 5 show examples of these measurements.

4.1.2 Inference

Given a new image to analyze, we �rst break it into local patches of image data

(image pairs). For each image pair patch, we collect a set of candidate scene

interpretations from the training database. The belief propagation algorithm

updates a set of probability assignments for each candidate scene interpretation,



Figure 3: Schematic illustration of multi-scale representation used for motion

analysis problem. The image data is presented to the Markov network at multiple

resolutions. Each scene node (representing the a patch of velocity data at some

resolution and position) connects with its neighbors both in space and across

scale. Each scene node also has connections (not shown) with a patch of image

observations at the corresponding position and scale.

Figure 4: The local likelihood information for motion problem, in a vector quan-

tized representation. Conditional probabilities for the image data y (pair of

image patches), given the scene x (projected velocities over a patch) are de-

rived from co-occurence histograms. For a given image data sample, (a), the

four scene elements with the highest likelihood of generating the image data are

shown in (b).

based initially only on the local image data at that patch, then taking into

account more and more image data as the algorithm iterates.

Figure 6 shows six iterations of the inference algorithm as it converges to

a good estimate for the underlying scene velocities. The local probabilities

we learned (P (x), P (yjx), and P (xnjx)) lead to �gure/ground segmentation,

aperture problem3 constraint propagation, and �lling-in (see caption). The

resulting inferred velocities are correct up to the accuracy of the vector quantized

representation.

3The aperture problem refers to the fact that when you observe only a small piece of edge,

you can only determine the component of its velocity across the edge, but not the component

in the direction of the edge.



Figure 5: Some scene conditional probabilities, for the motion problem. For

the given scene element, (a), the four most likely nodes from four di�erent

neighboring scene elements are shown. For example, the top left plot of (b)

shows the four motion patches most likely to appear at position x1, above the

given patch of velocity data, and similarly for the three other positions relative

to x0. Scene elements also connect to patches at other scales, not shown in this

�gure.



Figure 6: The most probable scene code for Fig. 2b at �rst 6 iterations of

Bayesian belief propagation. (a) Note initial motion estimates occur only at

edges. Due to the \aperture problem", initial estimates do not agree. (b) Filling-

in of motion estimate occurs. Cues for �gure/ground determination may include

edge curvature, and information from lower resolution levels. Both are included

implicitly in the learned probabilities. (c) Figure/ground still undetermined in

this region of low edge curvature. (d) Velocities have �lled-in, but do not yet

all agree. (e) Velocities have �lled-in, and agree with each other and with the

correct velocity direction, shown in Fig. 2.



4.2 Extension to more realistic images

The blob world discussed above is a very simple model of motion in real images.

In order to apply the Markov network formalism to more realistic images, we

generated a number of scenes using 3D Studio Max, release 2.5, a 3D modelling

and rendering program. Distorted cubes in various orientations and positions

were rendered from a camera directly overhead, and then from a slighly rotated

and translated camera to generate a second frame. Examples of overhead images

may be seen in �gures 7(a) and 8(a).

For the blobs problem, we used a simple approach of storing (through our

training observations) all possible local patches we would observe, and all pos-

sible scene observations for each one of those. In applying this approach to

these more realistic images, we ran into a number of problems, related to the

complexity of more realistic images. There are two major reasons why the blob

world is easier to deal with than realistic images:

� The background is stationary. A stationary background means that if

we observe a moving edge in an image patch, we know that one side of

the edge is stationary, and we know the component of the velocity of the

foreground in the direction perpendicular to the edge. Thus, the possible

scene patches (optical 
ow) at an edge consist of a pair of one-dimensional

spaces (the velocity parallel to the edge is the continuous dimension, and

either side of the edge can be the foreground).

For real images, the background may also be moving, and unless it has

signi�cant texture, it is diÆcult to tell which direction it is moving in.

In the absence of other (global) information, the possible motions at a

patch are a pair of three-dimensional spaces (we have two extra dimensions

because the background can be moving at any velocity). It is more diÆcult

both to learn and to do inference in this higher-dimensional space.

� The blobs are untextured. Because the blobs have no surface texture, there

are relatively few possible image patches. Consider an image patch in the

interior of a blob: every such patch will look identical, and we only need

to describe the di�erent possible scene motions.

But real surfaces do have texture. To sample from all possible input data

we need to sample from all possible patch textures combined with all

possible motions that the patches could undergo.

4.2.1 Inference

If we were to use the same approach as we did with the blobs world, of choosing

a set of image/scene pairs for each node, the number of candidates would have

to be very large. There are many possible image patches in real images; we

found that in order to ensure including the correct scene among the candidates,

we needed to maintain a very long list of candidates.



Instead, we used the brightness constraint equation (BCE) common in op-

tical 
ow work in computer vision [19], and generated a list of candidate scene

explanations on the 
y for each image patch of the test image. The BCE assumes

that an object that moves from frame to frame will have the same brightness in

each frame, possibly appearing at di�erent points in the image.

Suppose that the pixel at point (x; y) at time t has moved to point (x +

dx; y + dy) at time t+ dt. Then we have

I(x; y; t) = I(x+ dx; y + dy; t+ dt)

If we take a Taylor series on the right to �rst order,

I(x; y; t) = I(x; y; t) +
@I

@x
dx+

@I

@y
dy +

@I

@t
dt

In other words,

rI � v = �
@I

@t

For real images, the equality will not be exact, and so it is standard practice

to take a least squares estimate. Using this equation, we can evaluate the

likelihood of di�erent optical 
ow vectors at any pixel. (See the chapter by

Weiss and Fleet for a complete discussion of likelihood functions for motion

analysis). Of course, the aperture problem arises if we just consider a single

pixel (we will only be able to determine one component of the velocity), but

taking the sum over several pixels generally avoids this issue.

This raises the question of which pixels to sum over. Because of the diÆculty

mentioned above with edges in environments with nonstationary backgrounds,

we assume that the optical 
ow is constant over a patch. This assumption is

used in regularization approaches to the optical 
ow problem [19, 7] in which

motion is smoothed across discontinuities. By making the optical 
ow constant

over a patch, we are essentially ignoring the presence of object boundaries, but

we gain signi�cantly in that we no longer need to represent all possible optical


ow vectors on either side of the boundary.

Due to the large numbers of samples that we would otherwise need to observe

in training, instead of learning the statistics of neighbouring patches, we adopted

a heuristic which gives us a measure of the correspondence between adjacent

patches. Adjacent patches overlap by one pixel; then the compatibility of two

adjacent patches can be estimated by the agreement that the two patches have

on their common pixels. If the two patches have very di�erent beliefs about the

values of the pixels they share, those patches cannot be side by side.

Speci�cally, let k and j be two neighboring scene patches. Let d
l
jk be a

vector of the pixels of the lth possible candidate for scene patch xk which lie

in the overlap region with patch j. Likewise, let dmkj be the values of the pixels

(in correspondence with those of dljk) of the mth candidate for patch xj which

overlap patch k. We say that scene candidates xlk (candidate l at node k) and x
m
j



are compatible with each other if the pixels in their regions of overlap agree. We

assume that the scene training samples di�er from the \ideal" training samples

by Gaussian noise of covariance �s. Those covariance values are parameters of

the algorithm. We then de�ne the compatibility matrix between scene nodes k

and j as

	(xlk; x
m
j ) = exp�jd

l

jk
�dm

kj
j
2=2�2

s (9)

The rows and columns of the compatibility matrix 	(xlk; x
m
j ) are indexed by

l and m, the scene candidates at each node, at nodes j and k. We evaluate

�(xk ; yk) in an analogous fashion [12].

In using this heuristic, we are no longer learning the statistics of adjacent

patches. Since for these images, we constrain our velocity samples to be u-

niform over each patch, the method of evaluating 	(xk; xj) is equivalent to a

smoothness constraint on the reconstructed motion. This is similar to other

motion smoothness constraints (e.g. [19]), although enforced by Bayesian belief

propagation.

Initially, we chose our optical 
ow vectors by sampling from the distribution

of velocities consistent with the BCE. But we found that at some nodes in

the network, there would be a number of adjacent patches which all had very

similar samples, not because of similar structure, but simply because of the

randomness of sampling. Because these samples agreed with their neighbours,

and other samples may not have had such good agreement, these nodes would

end up with a strong belief, based on no evidence, which was often contradictory

to the correct answer.

Thus, we chose to select candidates by choosing optical 
ow vectors on a

uniform grid, and to keep all of the candidates for each node. This solved any

problems with random agreement with neighbours, since each neighbour also

had the complete candidate list, so no candidate had more agreement than any

other.

4.3 Results

In �gures 7 and 8, we show two examples of the optical 
ow algorithm working

on our realistic images. Observe that initially, the optical 
ow vectors are mostly

zero (we display the average vector for each patch, weighted by its belief) except

at edges, where we have a good estimate of the perpendicular velocity. After

one iteration, the information at the edges begins to be propagated, and after

a few iterations, the solution is close to the correct answer.

In some cases, the �nal solution deviates from the correct answer, especially

at the image boundary. This is partially due to the fact that in this model,

there is no way for a node at the boundary to have a greater magnitude than its

neighbours. If the images are from a camera rotating about its optical axis, we

observe the centre of the vector �eld rotating, and we expect the boundary of

the image to be rotating more. Similarly, if the camera is moving towards the



scene, we see expansion in the middle of the image, and we expect that e�ect

to be exaggerated towards the boundary, even in the absence of any con�rming

evidence. But with a Markov network, if there is no information present at the

boundary of an image, the nodes there will likely share the belief of the nearest

nodes with good information. Since those nodes are closer to the centre of the

image, the optical 
ow vectors will tend to have smaller magnitude, and the

optical 
ow on the boundary will be underestimated.

Figure 9 shows a frame from the Yosemite image sequence [17], and the

resulting optical 
ow from our algorithm. The clouds are correctly identi�ed as

moving to the right, and there is a focus of expansion somewhat to the right of

the center of the image as we 
y towards that point. A few scene patches in the

clouds still have some error; the lack of texture in that part of the image makes

accurate optical 
ow estimation there exceedingly diÆcult.



(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 7: Example of optical 
ow solution using belief propagation. (a) one

frame of the two-frame input image pair. (b) The true rotational (synthetically

generated) optical 
ow for this image. (c) The initial estimate of optical 
ow,

with no information from a scene node's neighbors. (d){(h) Reconstructed op-

tical 
ow after 1{5 iterations of belief propagation. The initial iterations show

little motion in regions where there is little image contrast perpendicular to the

direction of motion, such as the right hand side, and upper left hand corner.

The spatial continuity of the motion, enforced by the belief propagation, �lls in

the motion smoothly.



(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 8: Another example of optical 
ow solution using belief propagation. See

caption to �gure 7.



(a) (b)

Figure 9: Results of motion estimation on Yosemite sequence. (a) Single frame

from sequence. (b) estimated optical 
ow, based on that frame and the subsequent

one. The clouds are 
owing to the right, and the land underneath is expanding

as we 
y into the valley.



5 Summary

We have presented an algorithm for motion analysis which uses belief propaga-

tion in a Markov network to estimate the optical 
ow between a pair of images

by communicating local information across space. The algorithm has been ap-

plied to a simple 2D blob world, as well as more realistic images generated in

a 3D rendering package. The local probabilistic descriptions have power and


exibility. For the motion problem, they lead to �lling-in motion estimates

in a direction perpendicular to object contours and resolution of the aperture

problem, Fig. 6.

The algorithm uses simple notions, which can apply to other vision prob-

lems: form hypotheses from local data, and propagate these across space. Of

course, these are well-known principles in computational vision [38, 9, 2, 3]; what

we propose is simple machinery to implement these principles. We have shown

elsewhere the usefulness of this method for the problems of super-resolution and

discriminating shading from paint [12]. From a synthetically generated world,

we learn a training set of local examples of image (image pairs) and scene

(projected image velocities) data. Using the machinery of Bayesian belief prop-

agation applied to Markov networks with loops, we quickly �nd approximate

solutions for the scene explanation which maximizes the posterior probability.
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