
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Incorporating Tutorial Strategies into an Intelligent Assistant
Jim R. Davies, Abigail S. Gertner, Neal Lesh, Charles Rich, Jeff Rickel, Candace L. Sidner

TR2000-30 October 01, 2000

Abstract
Computer tutors and intelligent software assistants have traditionally been thought of as
different kinds of systems. However tutors and assistants share many properties. We have
incorporated tutorial strategies into an intelligent assistant based on the COLLAGEN archi-
tecture. We are working on an agent, named Triton, which teaches and helps users with the
graphical user interface of an air travel planning system. We found that the collaborative
model underlying COLLAGEN is an excellent foundation for both an assistant and a tutor,
and that both modes of interaction can be implemented in the same system with different
parameter settings.

ACM International Conference on Intelligent User Interfaces (IUI)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2000
201 Broadway, Cambridge, Massachusetts 02139

MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Incorporating Tutorial Strategies into an
Intelligent Assistant

Jim R. Davies
Abigail S. Gertner

Neal Lesh
Charles Rich
Jeff Rickel

Candace L. Sidner

TR-2000-30 October 2000

Abstract

Computer tutors and intelligent software assistants have traditionally been thought of
as different kinds of systems. However tutors and assistants share many properties. We
have incorporated tutorial strategies into an intelligent assistant based on the COLLA-
GEN architecture. We are working on an agent, named Triton, which teaches and helps
users with the graphical user interface of an air travel planning system. We found that
the collaborative model underlying COLLAGEN is an excellent foundation for both an
assistant and a tutor, and that both modes of interaction can be implemented in the same
system with different parameter settings.

Proceedings of Intelligent User Interfaces 2001, January 2001, Santa Fe, New Mexico USA

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Information Technology Center America; an acknowledgment of the authors and individual contributions to the work;
and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 2000
201 Broadway, Cambridge, Massachusetts 02139

Submitted August 2000, revised and released October 2000.

Incorporating Tutorial Strategies

 Into an Intelligent Assistant

Jim R. Davies
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280, jimmydavies@usa.net

Neal Lesh, Charles Rich,
Candace L. Sidner

Mitsubishi Electric Research Labs, 201 Broadway,
Cambridge, MA 02139, {lesh, rich, sidner}@merl.com

Abigail S. Gertner
The MITRE Corporation

202 Burlington Rd, ms. K302
Bedford, MA 01730, gertner@mitre.org

Jeff Rickel
USC Information Sciences Institute
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292-6695, rickel@isi.edu

ABSTRACT
Computer tutors and intelligent software assistants have
traditionally been thought of as different kinds of systems.
However tutors and assistants share many properties. We have
incorporated tutorial strategies into an intelligent assistant based
on the COLLAGEN architecture. We are working on an agent,
named Triton, which teaches and helps users with the graphical
user interface of an air travel planning system. We found that the
collaborative model underlying COLLAGEN is an excellent
foundation for both an assistant and a tutor, and that both modes
of interaction can be implemented in the same system with
different parameter settings.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.
This is just an example, please use the correct category and
subject descriptors for your submission.

General Terms
Your general terms must be any of the following 16 designated
terms: Algorithms, Management, Measurement, Documentation,
Performance, Design, Economics, Reliability, Experimentation,
Security, Human Factors, Standardization, Languages, Theory,
Legal Aspects, Verification.

Keywords
Intelligent tutoring systems, software agents, intelligent assistants,
collaboration, discourse

1. INTRODUCTION
As a student gains expertise, a good tutor's behavior often begins
to resemble an assistant's. Similarly, a good assistant can teach
tasks as well as perform them. We believe that, especially for
procedural tasks, tutoring and assisting are best thought of as
points on a spectrum of collaboration.

In this paper, we report on our work in progress to incorporate
tutorial strategies into an intelligent assistant for an air travel
planning application. Our initial findings are (1) that by viewing
both tutoring and assisting as collaborative activities, the same set
of mechanisms can be used to support both, and (2) that
COLLAGEN can be extended and generalized to support both
activities. This paper is a case study of how we extended
COLLAGEN and used it to build a tutoring/assisting agent called
Triton. We will describe some of the differences between tutoring
and assisting, and discuss how these differences can be encoded
as parameters, in a single system.

1.1 The COLLAGEN System
COLLAGEN (COLLaborative AGENt) [7] is middleware for
building interface agents based on collaborative discourse theory.
COLLAGEN provides application developers with a platform on
which to implement agents for applications. The key algorithms
and data structures in COLLAGEN come from recent work in
collaborative discourse theory [5], which provides a general
model of communication between user and agent (including
interpreting intentions), and with a model of actions for
manipulation of the application itself. The action model provides
for action decomposition (via recipes) which the developer
specifies for a particular application. The agent uses these recipes
to interpret user actions and to plan it’s own actions.

As shown in Fig. 1, COLLAGEN provides user and agent “home”
windows for communication purposes. Agents built in
COLLAGEN interact with both the user and the application. Our
agent, Triton, was built with COLLAGEN to assist or tutor the
user in the use of an air travel application. Unlike COLLAGEN,
typical authoring programs for Intelligent Tutoring Systems (ITS)
require developers to intermix the encoding of domain
knowledge, pedagogical strategies, and the application
environment. These systems also do not model the
communication and actions of the agent and user as a
collaboration.

.

1.2 The Air Travel Planning Application
The air travel application can be used without an agent. Routes
are selected by clicking on cities on a map. The time intervals
during which the user needs to be in a particular city are specified
with sliding bars.

Figure 1: A screenshot of the air travel application and agent.
The agent’s window is in the upper right corner. The user’s
window is in the lower left corner.

1.3 The Assistant
We have previously reported [7] on an intelligent assistant we
built for the air travel application using COLLAGEN. The
assistant monitors what the user does and communicates with her
so that they have a shared understanding of the task. With this
knowledge, the assistant can propose next actions or even perform
them itself. Fig. 2 is an example scenario of the assistant’s
behavior (the city constraints of the trip were communicated
earlier in the dialogue).

36. User: Let’s plan the second leg of the trip.

37. Assistant: Okay.

38. User: [selects Washington] What next?

39. Assistant: [points to San Francisco] I will
select San Francisco.

40. User: Okay.

41. Assistant: [selects San Francisco]

42. User: What next?

43. Assistant: Let’s remove an airline constraint.

Figure 2: Except from an assistant scenario.

When a task is proposed by the user or the agent (as in lines 36
and 43 respectively), either collaborator can perform the action
(the user does the action in line 38; the agent in line 41). The
agent can suggest what to do next (line 43) based on its recipe
library.

2. INCORPORATING TUTORIAL
STRATEGIES
The most fundamental difference between tutoring and assisting is
that for assistants the main shared objective is to get the task done

(a task goal), whereas for tutors the main objective is for the user
to learn how to get the job done (a learning goal). When the
student wants to learn as well, this goal is shared.

Learning goals and task goals may be interleaved and may
sometimes be in service of and sometimes be in conflict with one
another. For example, the goal of keeping the student’s motivation
level high might conflict with the overall learning goal, because it
suggests helping the student when she gets stuck rather than
making her perform every action herself. An assistant may
sometimes form a subsidiary goal of teaching the user during task
performance. The assistant may want to make sure that the user is
able to do the task herself next time. In that case, the learning goal
is in service of the task goal.

The differences between the objectives of tutoring and assisting
required us to add functionality to the assistant in order for it to
also be a tutor. Furthermore we discovered that many of the
necessary differences could be implemented in COLLAGEN as
adjustable parameters, whose values determine how assistive or
tutorial the agent is, as well as the tutoring style. In this section we
describe how these differences were encoded in Triton’s
parameters. Like the original air travel assistant, Triton is an agent
built with COLLAGEN.

Fig. 3 is a scenario demonstrating some tutoring behaviors that we
will use as an example. In this scenario, “What next?” is a generic
help button the user can press when unsure of what to do. The
constraints of the flight were communicated to the user earlier in
the dialogue. In this scenario the user asks for help a lot; this is
mostly to show Triton’s functionality.

17. User: What next?

18. Triton: Please specify the route of the trip.

19. User: What next?

20. Triton: Select Atlanta and then select Boston.

21. User: What next?

22. Triton: Please select Atlanta.

23. User: What next?

24. Triton: [points to Atlanta with cursor] Please
click on the dot near Atlanta on the map.

25. User: [clicks on Atlanta] What next?

26. Triton: Please select Boston.

27. User: [clicks on Dallas]

28. Triton: Oops! What you did was select Dallas;
what you should have done was select Boston. I
will bring you back to the previous state by
clicking undo. [undo] Please select Boston.

29. User: [clicks on Boston]

30. Triton: Great job!

31. User: What next?

32. Triton: Select the dates and times of travel.

Figure 3: Excerpt from a tutorial scenario in which Triton is
leading the user through a worked example of planning a flight
from Atlanta to Boston.

The user could perform many correct actions in a row, and Triton
would follow along without interrupting.

2.1 Worked Examples
Tutors and assistants often differ in what they know about tasks.
While an assistant usually has generic recipes, a tutor often relies

heavily on worked examples. A generic recipe has many
unspecified parameters such as what city to select, whereas the
recipe for a worked example has specific bindings, such as
selecting Atlanta. Worked examples are particularly important for
artificial tutors, for which it might be difficult to automatically
generate explanations and error recovery strategies from purely
generic knowledge.

Our worked example recipes in Triton were developed as
extensions of the generic recipes in the original air travel assistant.

2.2 The User Is Not Always Right
When there is a conflict of opinion between the agent and the user
regarding what should be done next, an assistant usually trusts the
user’s judgment. This is not so much the case with tutoring, where
the student is less likely to be right, and where correcting errors is
important.

2.2.1 Determining When a Task is Completed
If the user says she is done with a task, our original assistant
assumed the goal is satisfied. In a tutoring situation it is the tutor
who ultimately decides when the task is correctly completed.

2.2.2 Responding to Errors
COLLAGEN interprets user actions with reference to its recipe
library. Using its plan recognition capability [4], it can understand
when a user begins working on a new task. If the user is doing
something that is not a part of a known recipe, COLLAGEN treats
it as an unrecognizable action.

When the user starts doing something the agent doesn't
understand, an assistant will usually let the user proceed without
interruption. But the more a user doesn’t understand what she is
doing, the more likely that an interruption is actually an error.
Tutors intervene to get students back on track.

In Triton, the point at which the agent intervenes is controlled by
a parameter, n, which is the number of unrecognized actions to
allow. We chose as Triton's current default behavior, based on
Anderson et. al. [1], to intervene as soon as a mistake is detected
(i.e. n = 0).

New response mechanisms were also added to COLLAGEN to
support error remediation. Triton first tells the user what she did
and reminds her of what she should have done. Then it uses the
"undo" button, to put the application back into the previous state,
and reminds her of what to do next (e.g., Fig. 3, line 28).

2.3 Tutors Are Not Maximally Helpful
An assistant will usually try to be maximally helpful with the task
at hand. In contrast, a tutor may choose not to be helpful because
the goal of having the student learn outweighs the goal of getting
the task done. This broad difference has the following
consequences.

2.3.1 Waiting for Student Initiative
If an assistant sees that a particular action needs to be done next,
there is no reason for it not to propose that action immediately. A
tutor, on the other hand, may want to wait and give the student a
chance to come up with the next action on her own, or ask for
help if she is really stuck. The level of initiative was already a
parameter of COLLAGEN. Its behavior needed to be refined
somewhat, however, to better support tutorial dialogue.

2.3.2 Suggesting Actions Without Doing Them
When there is an action to be done, an assistant should be willing
to do it. A tutor, however, may decide that the student must do the
action herself in order to learn effectively. In Triton, a parameter
determines whether either the user or the agent or just the user
performs application actions.

2.3.3 Explaining
Assistants and tutors both should be able to suggest what to do
next. In Triton, the user gets more help as she asks for it. At first,
Triton gives a task description of what to do next (e.g., Fig. 3, line
18). This is called proposing an action. If the user asks for more
help, Triton returns a more detailed explanation of what to do
(e.g., Fig.3, lines 20 and 24).

In Triton, an explanation consists of any number of utterances,
pointing acts or demonstrations. Explaining behavior is
implemented using recipes, which are hierarchical structures of
actions: (1) composite actions, which can be decomposed into
other actions, and (2) primitive actions, which typically
correspond to single clicks on the application GUI. Fig. 4 shows
the part of the recipe used in Fig. 3.

It is a common strategy in ITS's to initially respond to students'
help requests by giving a high-level hint, and then to provide
more specific information if the student asks for more help [1, 2].
Triton uses this strategy. The first request for help results in a task
description. The second request results in an explanation. Each
action has an explanation associated with it stored in an
explanation recipe. The explanation recipe for a composite action
is an automatically generated utterance listing the task
descriptions of the actions composing it. The explanation recipe
for a primitive action is an application-level description of what to
do on screen (e.g. “Click on the dot near Atlanta on the map”).

Figure 4: The recipe for selecting the route in a worked example.
The thought balloons are the explanation recipes associated with
the actions.

As the user asks for more help, Triton goes on to the next action.
If the previous action was composite, then the next action will be
its first component. The idea is that if the student does not
understand how to do the composite action even after hearing
what it is composed of, what she needs to hear next is how to do
the first component. In Fig. 3, line 21, the user asks for more help
after the breakdown explanation has been given. Triton responds
by moving down the action composition hierarchy to the next
action, which in this case is a primitive. The task description is
given first in Fig. 3, line 22. The user asks for help once again in
line 23, and then the explanation for the primitive action, an
application-level instruction, is given in line 24.

2.3.4 Demonstrating
Sometimes a tutor might want to demonstrate how something is
done. For Triton this means performing a sequence of actions,
followed by a sequence of undo actions to put the application in
its previous state. We put demonstrations in the explanation
recipes: Triton does any actions that are in explanation recipes
(including, usually, the appropriate number of undo’s). This
simple change generates the desired demonstration behavior. Both
task descriptions and explanation recipes were a part of the
existing COLLAGEN architecture.

2.3.5 Pointing
The original assistant would always use its cursor (the white hand
in the upper right of Fig. 1) to point to the part of the application
to be worked on when proposing actions. The assistant was
parameterized so that when tutoring, it would point at the correct
place in the application at a better time: when explaining a
primitive action.

3. CONCLUSION
Intelligent tutors and assistants have much in common. There has
been a great deal of research in both tutoring [8, 9] and assisting.
The goal of this work is to bridge these two areas. Triton provides
both modes of interaction, showing that a single architecture
based on collaborative discourse theory can support them both. In
natural settings, both tutoring and assisting are mediated by
dialogue [3, 6], shared goals, and plans. Future work can show
how tutors can smoothly transform into assistants, and assistants
can tutor when needed.

This work makes two main contributions to the ITS field. The first
is a middleware architecture that is independent of both the
domain being taught and the pedagogical style used. The second
is the use of recipes as a single representational structure that can
accommodate abstract actions, explanations, and worked
examples, including GUI actions, pointing actions, utterances,
explanations, and demonstrations. A new error response system
had to be added to COLLAGEN. For tutoring strategies to take
place, some recipes must be written for worked examples and
explanations.

All of the other behavioral differences between Triton and the
original assistant were made into parameters: (1) When to

intervene after error detection (after how many unrecognized
steps), (2) who should default to do the task actions (the user, or
anyone), and (3) when to point (upon proposal or explanation).

In the future, among many other open questions, we would like to
investigate how to use a student model [8] to inform parameter
value changes so it can shift smoothly from a tutor to an assistant
role.

4. REFERENCES
[1] Anderson, J. R., Corbett, A. T., Koedinger, K. R., and

Pelletier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences. 4(2), 167—207.

[2] Gertner, A.S. Conati, C, and VanLehn, K. (1998). Procedural
help in Andes: Generating hints using a bayesian network
student model. In Proc. of the 15th National Conf. Artificial
Intelligence.

[3] Graesser, A. C., Person, N. K., and Magliano, J. P. (1995).
Collaborative dialogue patterns in naturalistic one-on-one
tutoring. Applied Cognitive Psychology, 9, 495—522.

[4] Lesh, N, Rich, C. and Sidner, C. L. (1998). Using plan
recognition in human-computer collaboration, Seventh Int.
Conf. on User Modeling, Banff, Canada.

[5] Lochbaum, K. E. (1998). A collaborative planning model of
intentional structure. Computational Linguistics, 24(4).
525—72.

[6] Moore, J. D. and Paris, C. L. (1993). Planning text for
advisory dialogues: Capturing intentional and rhetorical
information, Computational Linguistics, 19(4), 651—695.

[7] Rich, C. and Sidner, C. L. (1998). COLLAGEN: A
collaboration manager for software interface agents. User
Modeling and User-Adapted Interaction, Vol. 8, No. 3/4,
315—350.

[8] Sleeman, D. H., and Brown, J. S. (Eds.) (1982). Intelligent
Tutoring Systems. Academic Press, London.

[9] Wenger, E. (1987). Artificial Intelligence and Tutoring
Systems. Morgan Kaufmann Publishers, Inc. Los Altos, CA.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2000-30.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

