TR2018-072

LMKL-Net: A Fast Localized Multiple Kernel Learning Solver via Deep Neural Networks


    •  Zhang, Z., "LMKL-Net: A Fast Localized Multiple Kernel Learning Solver via Deep Neural Networks", arXiv, July 12, 2018.
      BibTeX Download PDF
      • @techreport{MERL_TR2018-072,
      • author = {Zhang and Z.},
      • title = {LMKL-Net: A Fast Localized Multiple Kernel Learning Solver via Deep Neural Networks},
      • institution = {MERL - Mitsubishi Electric Research Laboratories},
      • address = {Cambridge, MA 02139},
      • number = {TR2018-072},
      • month = jul,
      • year = 2018,
      • url = {http://www.merl.com/publications/TR2018-072/}
      • }
  • MERL Contact:
  • Research Areas:

    Artificial Intelligence, Computer Vision, Machine Learning


In this paper we propose solving localized multiple kernel learning (LMKL) using LMKL-Net, a feedforward deep neural network. In contrast to previous works, as a learning principle we propose parameterizing both the gating function for learning kernel combination weights and the multiclass classifier in LMKL using an attentional network (AN) and a multilayer perceptron (MLP), respectively. In this way we can learn the (nonlinear) decision function in LMKL (approximately) by sequential applications of AN and MLP. Empirically on benchmark datasets we demonstrate that overall LMKL-Net can not only outperform the state-of-theart MKL solvers in terms of accuracy, but also be trained about two orders of magnitude faster with much smaller memory footprint for large-scale learning.