Learning-based Robust Stabilization for Reduced-Order Models of 2D and 3D Boussinesq Equations

We present some results on the stabilization of reduced-order models (ROMs) for thermal fluids. The stabilization is achieved using robust Lyapunov control theory to design a new closure model that is robust to parametric uncertainties. Furthermore, the free parameters in the proposed ROM stabilization method are optimized using a data-driven multi-parametric extremum seeking (MES) algorithm. The 2D and 3D Boussinesq equations provide challenging numerical test cases that are used to demonstrate the advantages of the proposed method.