TR2013-068

Bounds for the Rayleigh Quotient and the Spectrum of Self-Adjoint Operators


    •  Zhu, P.; Argentati, M.E.; Knyazev, A.V., "Bounds for the Rayleigh Quotient and the Spectrum of Self-Adjoint Operators", SIAM Journal on Matrix Analysis and Applications, March 2013.
      BibTeX Download PDF
      • @article{Zhu2013mar,
      • author = {Zhu, P. and Argentati, M.E. and Knyazev, A.V.},
      • title = {Bounds for the Rayleigh Quotient and the Spectrum of Self-Adjoint Operators},
      • journal = {SIAM Journal on Matrix Analysis and Applications},
      • year = 2013,
      • month = mar,
      • url = {http://www.merl.com/publications/TR2013-068}
      • }
  • MERL Contact:
  • Research Areas:

    Algorithms, Computer Vision


The absolute change in the Rayleigh quotient (RQ) is bounded in this paper in terms of the norm of the residual and the change in the vector. If x is an eigenvector of a self-adjoint bounded operator A in a Hilbert space, then the RQ of the vector x, denoted by (x), is an exact eigenvalue of A. In this case, the absolute change of the RQ j(x) (y)j becomes the absolute error for an eigenvalue (x) of A approximated by the RQ (y) on a given vector y: There are three traditional kinds of bounds for eigenvalue errors: a priori bounds via the angle between vectors x and y; a posteriori bounds via the norm of the residual Ay (y)y of vector y; mixed type bounds using both the angle and the norm of the residual. We propose a unifying approach to prove known bounds of the spectrum, analyze their sharpness, and derive new sharper bounds. The proof approach is based on novel RQ vector perturbation identities.