
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

The Sound Demixing Challenge 2023 – Cinematic Demixing
Track

Uhlich, Stefan; Fabbro, Giorgio; Hirano, Masato; Takahashi, Shusuke; Wichern, Gordon; Le Roux,
Jonathan; Chakraborty, Dipam; Mohanty, Sharada; Li, Kai; Luo, Yi; Yu, Jianwei; Gu, Rongzhi;
Solovyev, Roman; Stempkovskiy, Alexander; Habruseva, Tatiana; Sukhovei, Mikhail; Mitsufuji,

Yuki

TR2024-047 May 02, 2024

Abstract
This paper summarizes the cinematic demixing (CDX) track of the Sound Demixing Challenge
2023 (SDX’23). We provide a comprehensive summary of the challenge setup, detailing
the structure of the competition and the datasets used. Especially, we detail CDXDB23, a
new hid- den dataset constructed from real movies that was used to rank the submissions.
The paper also offers insights into the most successful approaches employed by participants.
Compared to the cocktail-fork baseline, the best-performing system trained exclusively on
the simulated Divide and Remaster (DnR) dataset achieved an improvement of 1.8 dB in
SDR, whereas the top-performing system on the open leaderboard, where any data could
be used for training, saw a significant improvement of 5.7 dB. A significant source of this
improvement was making the simulated data better match real cinematic audio, which we
further investigate in detail.
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Abstract

This paper summarizes the cinematic demixing (CDX) track of the Sound Demixing Challenge
2023 (SDX’23). We provide a comprehensive summary of the challenge setup, detailing the
structure of the competition and the datasets used. Especially, we detail CDXDB23, a new hid-
den dataset constructed from real movies that was used to rank the submissions. The paper
also offers insights into the most successful approaches employed by participants. Compared
to the cocktail-fork baseline, the best-performing system trained exclusively on the simulated
Divide and Remaster (DnR) dataset achieved an improvement of 1.8 dB in SDR, whereas the
top-performing system on the open leaderboard, where any data could be used for training,
saw a significant improvement of 5.7 dB. A significant source of this improvement was making
the simulated data better match real cinematic audio, which we further investigate in detail.
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1. Introduction
Cinematic source separation refers to the task of sepa-
rating movie audio into dialogue (DX), music (MX), and
sound effects (FX). While speech separation (Hershey
et al., 2016; Chen et al., 2017; Yu et al., 2017) and mu-
sic separation (Huang et al., 2012; Grais et al., 2014;
Uhlich et al., 2015) have been studied extensively, cin-
ematic source separation is a relatively recent field (Pe-
termann et al., 2022) despite its numerous practical
applications. These include enhancing old movies by
converting them to formats like MPEG-H or Dolby At-
mos, dubbing them into different languages, or gener-
ating subtitles including non-speech sounds present in
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an auditory scene.
The first work in the area of cinematic separa-

tion was dialogue enhancement in (Uhle et al., 2008;
Geiger et al., 2015)(Paulus et al., 2019; Torcoli et al.,
2021), which employs source separation to extract and
remix the dialogue signal at a desired level. The prob-
lem was further formalized in (Petermann et al., 2022),
where Petermann et al. introduced cinematic separa-
tion as a three-way problem of splitting the audio into
dialogue, sound effects, and music, which they re-
ferred to as the cocktail fork problem. They created
a new dataset, Divide and Remaster (DnR), which was
built upon LibriSpeech (Panayotov et al., 2015) for dia-
logue, Free Music Archive (Defferrard et al., 2016) for
music, and the Freesound Dataset 50k (Fonseca et al.,
2021) for sound effects. Their exploration of various
separation models revealed that their proposed multi-
resolution extension of X-UMX (Sawata et al., 2021,
2023), termed MRX, provided the best performance.
Subsequently, the same authors extended this work in
(Petermann et al., 2023) to also consider the impact
of source separation on downstream tasks. They pro-
posed a two-stage approach where an MRX separator
is used to obtain preliminary separation, which is fol-
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lowed by an activity detector to estimate the activity
profile for every source. This activity information is
then utilized in a second stage by a conditioned MRX,
called MRX-C, to improve the separation performance.
Recently, DnR was also used in (Watcharasupat et al.,
2023), which extended the band-split RNN (Luo and
Yu, 2023) to cinematic separation by introducing the
BandIt architecture.

Cinematic separation has several unique challenges
compared to speech or music separation. Firstly, the
multi-channel format of most cinematic audio (stereo
or 5.1 surround) necessitates a suitable augmentation
during training, as many datasets are only monaural,
such as the DnR dataset. Secondly, the scarcity of
full-bandwidth material with sampling rate of 48 kHz
for training poses a significant hurdle, as high-quality
audio data is essential for effective model training.
Thirdly, the lack of emotional speech within the used
speech datasets presents a challenge. Separation mod-
els trained on these datasets often struggle with emo-
tional speech in real cinematic dialogues, because it is
typically absent from the training data as was already
noted in earlier work (Uhle et al., 2008). Fourthly, the
sound effects class, which encompasses a wide variety
of sounds, is particularly challenging to extract due to
its broad and diverse nature1. Finally, the three classes
exhibit some overlap, such as the presence of vocals
in music, background chatter (chatter noise), which is
a sound effect but shares similarities with dialogue, or
the use of musical instruments for sound design as seen
in the alien communication signal in Close Encounters
of the Third Kind, which is a sound effect made of musi-
cal notes. These challenges highlight the complexity of
cinematic separation and the need for further research
and development in this field.

Hence, in addition to the music demixing (MDX)
track (Fabbro et al., 2023), which was already present
in the Music Demixing Challenge 2021 (MDX’21) (Mit-
sufuji et al., 2022), we have added a new cinematic
demixing (CDX) track to the Sound Demixing Chal-
lenge 2023 (SDX’23) in order to foster research in
this direction. The challenge was facilitated through
AIcrowd2, and participants were invited to submit their
systems to one of two leaderboards, depending on
whether they used only DnR or additional training
data. To rank the submissions, we developed a new
hidden test set, called CDXDB23, derived from real
movies. Through the establishment of this challenge
framework, we observed substantial performance en-
hancements. Specifically, the top-performing system,
trained solely on DnR, demonstrated an improvement
of 1.8 dB compared to the cocktail-fork baseline based
on MRX (Petermann et al., 2022). Remarkably, the
highest-performing system on the open leaderboard,
which allowed the use of any data for training, exhib-
ited a significant improvement of 5.7 dB. These results
underscore the efficacy of our challenge in driving ad-

vancements in the field of cinematic audio separation.
This paper is organized as follows: Sec. 2 outlines

the competition’s design, Sec. 3 discusses the train-
ing datasets and establishes the performance baseline,
Sec. 4 presents the results and summarizes the most
successful strategies, and Sec. 5 analyzes the differ-
ences between the provided training dataset, DnR, and
hidden test set, CDXDB23. Finally Sec. 6 concludes the
paper with key findings and future research directions.

2. CDX Challenge Setup
In the following, we will summarize the structure of
the competition.

2.1 Task Definition
Participants in the CDX track of SDX’23 were asked to
submit systems that can extract the dialogue sDX(n) ∈
R2, sound effects sFX(n) ∈ R2, and music sMX(n) ∈ R2

from the stereo cinematic audio

x(n) = sDX(n)+sFX(n)+sMX(n), (1)

where n denotes the time index and all stereo signals
are sampled at 44.1 kHz. We used the following defini-
tion for each class3:
• Dialogue refers to all spoken content in a movie

including conversations between characters, mono-
logues, and any other spoken elements.

• Sound effects are sounds that are used to support
or complement the action on screen. They can be
split into object sounds (e.g., footsteps) and ambient
sounds (e.g., wind or rain).

• Music refers to the soundtrack that accompanies the
visuals and which is often used to provide an emo-
tional context. It might be a single instrument (e.g.,
a violin in a dramatic moment) or a full orches-
tra/music band.

We verified these definitions with mixing engineers
from Sony Pictures.

A unique aspect of this challenge was the require-
ment for participants to submit their pre-trained mod-
els along with the corresponding inference code, as the
test dataset was kept hidden. This stands in contrast to
many other challenges where participants have access
to unlabeled test data and are required to submit pro-
cessed files or labels.

2.2 Leaderboards
Submissions were categorized under two leader-
boards:
• Leaderboard A was designated for models exclusively

trained on the train and validation splits ‘tr‘ and ‘cv‘
of the Divide and Remaster (DnR) dataset (Peter-
mann et al., 2022), while

• Leaderboard B was for models trained on any data.
The rationale behind this dual-leaderboard approach
is threefold. Firstly, it allows individuals who may
not have access to extensive datasets to participate in
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the competition. Secondly, it provides a platform to
explore data augmentation strategies, such as mono-
to-stereo conversion, which is particularly relevant as
the DnR dataset is monaural, while the hidden test
set used for evaluation is in stereo format. Thus, the
two leaderboards not only foster inclusivity but also
encourage innovative approaches to data augmenta-
tion. Thirdly, the two leaderboards allow disentangling
data improvements from algorithm improvements, as
Leaderboard B performance could come from extra
data or better augmentation strategies relying on ad-
ditional data (e.g., room impulse responses), while
Leaderboard A improvements must come from aug-
mentations without additional data and from algo-
rithms only. However, Leaderboard B is required to
determine the true state of the art.

2.3 Ranking Metric
For the evaluation of the systems, we used the global
signal-to-distortion ratio (SDR) which is defined for one
movie clip as

SDR= 1

3

(
SDRDX +SDRFX +SDRMX

)
, (2)

with SDR j = 10log10

∑
n∥s j (n)∥2∑

n∥s j (n)−ŝ j (n)∥2 where s j (n) ∈R2 and

ŝ j (n) ∈ R2 denote the stereo target and estimate for
source j ∈ {DX,FX,MX}. The definition in (2) is also
called utterance-level SDR (cf., for example, (Luo and
Yu, 2023)) and equivalent to the SDR of multi-channel
BSS Eval v3 (Vincent et al., 2007). Finally, the global
SDR of (2) is averaged over all clips in the hidden
test dataset and the three sources DX, FX, and MX to
obtain the final score. We chose this metric to rank
submissions over scale-invariant metrics like SI-SDR
(Le Roux et al., 2019), because systems with good
SDR performance have the advantage that they can
easily be blended with other models (Uhlich et al.,
2017) and also allow one to compute the residual
ŝ¬ j (n) = x(n)− ŝ j (n) without having to recover the cor-
rect scale.

Besides the chosen global SDR (2), there are also
other metrics that were proposed in the literature for
the comparison of source separation models. As part
of MDX’21, a thorough comparison of different metrics
was done in (Mitsufuji et al., 2022) to show that (2)
highly correlates with many others, in particular those
that were used in previous iterations of the SiSEC com-
petition in 2015, 2016, and 2018. We refer the inter-
ested reader to (Mitsufuji et al., 2022) for more details.

2.4 Timeline, Challenge Phases and Prizes
The challenge took place in two phases. Phase I
started on January 23rd, 2023. Phase II commenced
on March 6th, 2023, as planned. However, due to the
submission system experiencing difficulties in handling
the surge in the number of submissions towards the
end of the challenge, the end date of Phase II was ex-

tended by one week. Originally scheduled to conclude
on May 1st, 2023, the challenge was extended to May
8, 2023, to ensure a fair competition for all teams.

CDXDB23 was partitioned into three sets of approx-
imately equal size, each containing three, three, and
four movies respectively. During Phase 1 of the compe-
tition, participants were able to assess the performance
of their submissions using one-third of the movies from
the hidden test set. In Phase 2, this was expanded to
include two-thirds of the movies from the hidden test
set. Upon the conclusion of Phase 2, participants were
required to select three submissions for evaluation on
the full hidden test set, the results of which were then
displayed on the final leaderboards. This selection pro-
cess was implemented to mitigate the potential impact
of overfitting. In cases where participants did not ex-
plicitly select three submissions, the top three submis-
sions from the Phase 2 leaderboard were automatically
chosen for final evaluation.

For Leaderboard A, which was for models trained
exclusively on the Divide and Remaster (DnR) dataset,
a total of 5,000 USD was distributed among the top
three submissions. The first-place winner received
2,500 USD, the second-place winner was awarded
1,500 USD, and the third-place winner received 1,000
USD. To be eligible for these prizes, participants were
required to open-source both their training and in-
ference code as well as the pretrained model. Simi-
larly, for Leaderboard B, which was for models trained
on any data, the same prize distribution was applied:
2,500 USD for the first place, 1,500 USD for the second
place, and 1,000 USD for the third place, totaling 5,000
USD. For this leaderboard, participants were required
to open-source their inference code as well as the pre-
trained model. Compliance with these open-source re-
quirements was ensured by the organizers through a
due diligence check. In the course of this evaluation,
a thorough review of the source code was conducted
to verify that participants in Leaderboard A exclusively
trained their models using only DnR.

3. Datasets and Baseline
The following subsections offer detailed descriptions
of the datasets employed throughout the challenge, as
well as an overview of the baseline included in the
starter kit.

3.1 Divide and Remaster (DnR) – Training Dataset
Introduced in (Petermann et al., 2022), the Divide and
Remaster (DnR) dataset serves as a tool for develop-
ing and evaluating mono audio signal separation al-
gorithms applied to podcasts, television, and movies.
It includes artificial mixtures sourced from LibriSpeech
(Panayotov et al., 2015), Free Music Archive (FMA)
(Defferrard et al., 2016), and Freesound Dataset 50k
(FSD50k) (Fonseca et al., 2021). This dataset, avail-
able in both 16 kHz and 44.1 kHz sampling rates,
comes with time-stamped annotations for each class:
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genre for music, audio-tags for sound effects, and tran-
scription for speech.

The creation process of DnR was centered on ad-
dressing class overlap and relative source levels in
the mix within a single-channel4 context. It includes
four categories: speech, music, foreground effects, and
background effects – the latter two being merged into
a single submix. All mixtures have a duration of 60
seconds, encompassing multiple full speech utterances
and sufficient onsets and offsets between classes. File
count for each class was set via a zero-truncated Pois-
son distribution, and relative amplitude levels across
the classes were determined per industry standards
and prior studies as discussed in (Petermann et al.,
2022). Each sound file’s gain was individually adjusted
to add variability while preserving realistic consistency
across the mix. The final dataset, divided into training,
validation, and testing subsets in line with base dataset
proportions, comprises 3,406 training mixtures, 487
validation mixtures, and 973 test mixtures.

While the DnR dataset took care to simulate realis-
tic cinematic mixtures, there are some notable differ-
ences between the source material used to create DnR
and actual cinematic audio:
• Read speech vs. emotional speech – First, Lib-

riSpeech contains read speech from audio books,
which may have significant timbral differences com-
pared to the emotional speech typically used by film
actors.

• Vocals in music stems – Second, many of the mu-
sical genres from the FMA dataset contain vocals.
While music with vocals is used in cinema, the ma-
jority of cinematic music does not contain singing.
Thus, the prevalence of music with vocals may be
overrepresented in FMA compared to the hidden test
data.

• Production quality – Finally, Librispeech, FMA, and
FSD50K are all crowd-sourced datasets, and there
may be significant differences in terms of recording
hardware and post-production effects compared to
actual movies. We will investigate this in more detail
in Sec. 5.

In summary, it is expected that mismatches such as this
may limit performance of separation models trained
only on DnR.

For Leaderboard A, participants were required to
only utilize the training and validation split of the DnR
dataset in training their systems.

3.2 CDXDB23 – Hidden Test Dataset
To rank the submissions, we generated a novel dataset
derived from authentic Sony Pictures movies and we
will refer in the following to this dataset as cinematic
demixing database (CDXDB23). It comprises 11 movies
with a total of 156 clips each with an average length
of 11 seconds, amounting overall to approximately
19.4 minutes of content. The audio was originally

in a higher sample rate, but we downsampled it to
44.1 kHz stereo to match the sample rate of the DnR
dataset. This was done to avoid requiring participants
in Leaderboard A to design systems that can upscale
to a higher sampling rate. Fig. 1 shows the distribu-
tion of the genres as well as the release years of the
eleven movies inside CDXDB23. Please note that a
single movie can fall under multiple genres, such as
Animation and Family. This characteristic is reflected
in the bar plot, where the representation of movies in
various genres contributes to the observed distribution.
From Fig. 1 we can observe that they are recent movies
covering a wide variety of genres.

The original data supplied by Sony Pictures was
formatted as 5.1ch, 48 kHz, and 24-bit with several
stem tracks for each movie, encompassing either dia-
logue, effects, music, or their combination. We man-
ually annotated the sound events with one class label
(dialogue, sound effects, or music) within each stem
and carefully selected segments to ensure a balanced
representation of each class in the resulting mixture.
Specifically, to exclude extremely low-amplitude sound
sources, we computed for each class the root mean

square RMS j = ( 1
N

∑N
n=1∥s j (n)∥2

) 1
2 and excluded seg-

ments where this value was below a threshold τ j for
any j ∈ {DX,FX,MX}. Empirically, we found the thresh-
olds

τDX = 0.022, τFX = 0.005, τMX = 0.003,

to give good test samples. On occasion, environmental
noise was unintentionally recorded, or dialogue/vocal
components appeared in the effects or music stems. We
made diligent efforts to minimize the inclusion of such
samples by manually inspecting all data.

Please note that we are unable to provide further
details about the movies (e.g., title or actors) to pre-
vent participants in a future challenge from fine-tuning
their models based on this specific information. How-
ever, we made available demo samples from “Kilian’s
Game”, a short film produced by Sony Pictures to
demonstrate the latest filmmaking technologies. These
samples could be used by participants to test their sub-
missions and to see the performance on real movie au-
dio.5 The samples from “Kilian’s Game” were not used
to rank the submissions.

Ideally, we should also use authentic movie data for
training models. During the preparation of CDXDB23,
we noticed that this is actually not straightforward.
One problem is the preparation of the three-way stems
from movie audio, which is a time-intensive process.
The material is not readily accessible, requiring reload-
ing all raw tracks into the Digital Audio Workstation
(DAW), deciding for each of them the class it belongs
to, and finally bouncing the stems for each class. Ad-
ditionally, we noticed the challenge of other sound
classes infiltrating a single stem. For example, dia-
logue stems can contain sound effects recorded on-
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Figure 1: Statistics about movies in CDXDB23.

stage. Consequently, after bouncing the stems, one has
to manually annotate all audio material to find suitable
time regions for the three-way separation, leading to a
smaller dataset suitable only for testing, as exemplified
by CDXDB23.

3.3 Cocktail-Fork Baseline

As part of the challenge, MERL open-sourced their
multi-resolution CrossNet (MRX) (Petermann et al.,
2022), an improved version of CrossNet-UMX (X-UMX)
(Sawata et al., 2021, 2023), which itself is an improved
version of Open-Unmix (UMX) (Stöter et al., 2019).
MRX leverages multiple short-time Fourier transform
(STFT) resolutions of the mixture, enhancing the es-
timation process as it allows to better address the vari-
ety of acoustic characteristics of the three source types.
The entire system is available on GitHub6.

Using the available pre-trained model on DnR, a
baseline submission was created and made available
for all participants as part of the starter-kit7. We no-
ticed already during the preparation of the baseline
that scaling the input mixture is beneficial and, hence,
apply the scaling

x(n) ← x(n)

max
n

|x(n)| , (3)

i.e., the cocktail-fork model is run on the peak normal-
ized mixture. Training of MRX utilized scale-invariant
signal-to-distortion ratio (SI-SDR) loss, necessitating
subsequent scale estimation using least-squares ac-
cording to the formula

ŝ j (n) ←
∑

n x(n)T ŝ j (n)

10−7 +∑
n∥ŝ j (n)∥2 ŝ j (n) (4)

for any j ∈ {DX,FX,MX}. Furthermore, a post-
processing step was implemented to ensure mixture
consistency (Wisdom et al., 2019), where we first com-
pute the residual r(n) = x(n)− ŝDX(n)− ŝFX(n)− ŝMX(n)

which is then distributed to the estimates

ŝDX(n) ← ŝDX(n),

ŝFX(n) ← ŝFX(n)+ 1

2
r(n),

ŝMX(n) ← ŝMX(n)+ 1

2
r(n).

This post-processing was beneficial as the residual
contains mostly sound effects and background music.
SDRFX improved by +1.1 dB and SDRMX by +0.7 dB,
resulting in an overall improvement of +0.6 dB. The
performance of the cocktail-fork baseline on CDXDB23
can be found in Table 1.

After the challenge, we revisited this baseline as
many participants recognized a distribution mismatch
between DnR and CDXDB23, which can also be seen in
Table 1 in the lower scores of this model. In Sec. 5.2,
we will present two new versions of the cocktail-fork
baseline with improved performance due to adjusting
the loudness or equalization of DnR during training.

4. Challenge Outcome
The CDX track saw a dynamic evolution in terms of
both the number of submissions and the SDR perfor-
mance. The competition attracted a total of 19 teams
for Leaderboard A and 10 teams for Leaderboard B,
with 369 and 179 submissions respectively. Tables 1
and 2 present the final rankings for both leaderboards.
The team aim-less emerged as the winner of Leader-
board A, achieving an average SDR of 4.345 dB. On
the other hand, Leaderboard B was topped by Jusper-
Lee, with an impressive SDR of 8.181 dB. It is note-
worthy that while all top five teams in Leaderboard A
were from academic institutions, the highest scores in
Leaderboard B were obtained by two commercial en-
tities. This diversity of participants underscores the
broad interest and applicability of the challenge across
both academic and industry sectors. Fig. 2 shows
the progress that the teams could achieve during the
course of the competition. We can observe that there
was a continuous improvement of the SDR for each
source and, especially at the end of the competition,
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Table 1: Final Leaderboard A (models trained only on DnR; top-5).

Rank Participant
Global SDR (dB) Submissions to Ldb A

Mean Dialogue Effect Music 1st phase 2nd phase

Submissions
1. aim-less 4.345 7.981 1.217 3.837 36 32 Code8

2. mp3D 4.237 8.484 1.622 2.607 − 42 Code9

3. subatomicseer 4.144 7.178 2.820 2.433 65 22 Code10

4. thanatoz 3.871 8.948 1.224 1.442 21 22
5. kuielab 3.537 7.687 0.449 2.474 36 15

Baseline
Scaled Identity ŝ j (n) = 1

3 x(n) -0.019 1.562 -1.236 -0.383
Cocktail-Fork (Petermann et al., 2022) 2.491 7.321 -1.049 1.200

Table 2: Final Leaderboard B (models trained on any data; top-5).

Rank Participant
Global SDR (dB) Submissions to Ldb A + B

Mean Dialogue Effect Music 1st phase 2nd phase

Submissions
1. JusperLee 8.181 14.619 3.958 5.966 42 102
2. Audioshake 8.077 14.963 4.034 5.234 − 97
3. ZFTurbo 7.630 14.734 3.323 4.834 25 31 Code11

4. aim-less 4.345 7.981 1.217 3.837 36 53 Code8

5. mp3D 4.237 8.484 1.622 2.607 − 48 Code9

there is a steady improvement visible as participants
tuned their submissions.

To investigate whether this improvement resulted
from participants overfitting to the visible portion of
the test set, Fig. 3 presents the difference between the
hidden SDR (the SDR for all clips of CDXDB23 hidden
from the participants) and the visible SDR (the SDR for
all clips of CDXDB23 shown to the participants). Com-
paring two subsequent submissions where the newer
one is worse in this difference than the previous one
indicates that a participant is obtaining less improve-
ment/more degradation on the hidden SDR than for
the visible SDR hinting at a possible overfitting to the
displayed global SDR. Hence, seeing “trajectories” of
consecutive submissions in Fig. 3 with negative slopes
can be used to detect overfitting. Intriguingly, some
degree of overfitting is apparent for the submissions to
Leaderboard B towards the end of the challenge but
less overfitting is observed for submissions to Leader-
board A. For example, looking at the results for the
teams JusperLee and Audioshake, we can see that there
is a negative trend in their submissions towards the end
of the challenge. Especially for team Audioshake, this is
visible as the models extracting sound effects and mu-
sic seem to be tuned in the last week of the challenge
period. Consequently, to reduce the potential effect of
overfitting, participants needed to select three submis-
sions at the end of the challenge which were then eval-

uated on the full CDXDB23 as discussed in Sec. 2.4.
The substantial improvement upon the provided

cocktail-fork baseline by the participants is notewor-
thy. This was achieved not only through the imple-
mentation of enhanced architectures, such as MRX-C
(Petermann et al., 2023) used by team mp3d, but also
through the identification and rectification of two is-
sues inherent in the DnR dataset. Firstly, the presence
of vocals in the music category necessitated dataset
cleaning. Secondly, the difference in loudness exhib-
ited by DnR resulted in suboptimal performance of
systems trained on this dataset, necessitating the con-
sideration of this factor as discussed in 4.3.2 by us-
ing a suitable input normalization. Interestingly, none
of the top teams explored mono-to-stereo augmenta-
tions, which presents an intriguing avenue for future
research.

Comparing the results for Leaderboard A and B, we
can observe that especially dialogue gains from having
access to additional training data. This is in our opin-
ion due to the access to much more speech and vo-
cals material, which can be used as training material
for dialogue. Particularly, the inclusion of vocal mate-
rial proves advantageous due to its similarity to emo-
tional speech. Additionally, the processing pipelines
employed in cinematic production may align closely
with those utilized in music production, further en-
hancing the benefit of vocal material.
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(d) Evolution of global SDR for music

Figure 2: Performance of submissions on full CDXDB23 over time.

In order to gain more insight into the benefit of ad-
ditional data, we show in Fig. 4 the performance of the
winning submissions on both leaderboards in compari-
son to the cocktail-fork baseline. Please note that there
is only a single clip for movie "000" and, hence, the box
plot collapses to a horizontal line. Notably, the most
significant disparities between the models trained on
DnR and the winning entry in Leaderboard B are ob-
served in animation movies ("002", "006") and action
movies ("003", "008").

After the conclusion of the challenge, we con-
tacted the top three teams in each leaderboard and
invited them to contribute to this manuscript with a
description of their approaches. In the following, the
teams accepting our invitation present their submis-
sions and discuss them. For the team subatomicseer,
which ranked 3rd in Leaderboard A, we refer the inter-
ested reader to (Fabbro et al., 2023) where the team
explains in detail their approach.

4.1 Team JusperLee (Kai Li, Yi Luo, Jianwei Yu,
Rongzhi Gu)

Final ranking: Leaderboard A: —, Leaderboard B: 1st

4.1.1 Dataset
We used the public Divide and Remaster (DnR) (Pe-
termann et al., 2022) dataset, the public deep noise
suppression (DNS) dataset (Dubey et al., 2022), the
public MUSDB18-HQ dataset (Rafii et al., 2019), and
some extra internal data for system training. The ex-
tra internal speech data include 150 hours of data used
for a text-to-speech task, the extra internal sound effect
data include 10 hours of cinematic sound effects data,
and the extra internal music data include 100 hours of
cinematic background music data.

One important step in our data preprocessing
pipeline was that we found that the effects and mu-
sic signals in both the DnR dataset and our internal
dataset may contain human voice. We thus used a mu-
sic source separation (MSS) model to preprocess all the
effect and music signals to remove the “speech” or “vo-
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(f) Team ZFTurbo

Figure 3: Analysis of overfitting of global SDR. y-axis shows difference between global SDR on hidden test set
and global SDR displayed to the participants (trajectories with negative slope indicate overfitting).
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(b) Global SDR for dialogue
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(c) Global SDR for sound effects
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(d) Global SDR for music

Figure 4: Comparison of the cocktail-fork baseline with winning submissions on both leaderboards for individual
movies. For movie "000", we only have one clip and, hence, the box plot collapses to a horizontal line. Circles
represent outliers that are outside the whiskers of the boxplot.

cal” signals from them. We found that doing this signif-
icantly improved the systems’ performance compared
to directly using the original signals for training.

4.1.2 Methods
a) On-the-fly Data Mixing – We performed on-the-fly
data mixing during training to increase the variety of
the training data mixtures. For each mixture utterance,
we randomly sampled 0−1 speech or vocal signals (we
also treated s vocal signal as a form of dialogue sig-
nal in our setting), 0−2 music signals, and 0−3 effect
signals, and rescaled each of them by a random en-
ergy gain of [−10,10] dB. We truncated the signals to
be 3-seconds long and then added them up to form the
mixture. The sum of individual music and effects sig-
nals were set as the training targets for the two tracks,
respectively.

b) Model Design – Our system consists of three inde-
pendent models, one for each of the dialog, effects, and

music sources. All models share the same architecture,
which is the band-split RNN (BSRNN) architecture we
proposed for the MSS task (Luo and Yu, 2023). For
the dialogue track, we directly use a BSRNN model
trained for the music source separation task instead of
the CDX task, as we eventually found that using an
MSS model trained on music-only data that extracts
the vocal track from the accompaniment can lead to
better SDR score on the hidden test set than a speech
extraction model trained on speech data (please see
the discussion section for more on this observation).
For the effects source and the music source, we used
two separate BSRNN models trained on the aforemen-
tioned dataset, while we used the MSS model to first
subtract the separated dialogue signal from the mix-
ture to create a pseudo music-effects-only mixture, and
then trained the two models on this mixture to perform
a slightly simpler separation task. We found that this
could lead to better performance than training the two



10 Uhlich et al.: The Sound Demixing Challenge 2023 – Cinematic Demixing Track

models on mixtures containing dialogue data, and also
better than training on mixtures without speech or vo-
cal signals.

We used the standard BSRNN architecture, for
which we do not include a detailed description here
for the sake of brevity. The band-split scheme we used
for all models was identical to the one we proposed in
the original paper (Luo and Yu, 2023). The number
of sequence and band modeling modules in the effects
and music models were 8 and 12, respectively, and the
feature dimension N was set to 64 and 128, respec-
tively.

c) Training Configurations – All models were trained
with the Adam optimizer (Kingma and Ba, 2014) with
an initial learning rate of 0.001. We used 8 GPUs for
each model with a per-GPU batch size of 2. Each train-
ing epoch contained 10k iterations, and the learning
rate was decayed by 0.98 every two epochs. We did
not apply early stopping as the evaluation was done on
the hidden test set, and we submitted the latest model
to the grading system every day to find the best model.

4.1.3 Results and Discussions
Our system achieved #1 on the Final Leaderboard B in
the CDX challenge. Comparing with other top-ranking
systems, our system performed significantly better on
the music source and on par or slightly worse on the
two other sources, and the overall improvement mainly
came from the gain from the music source.

To better understand the effect of our vocal-
removal preprocessing on DnR, we did an ablation
study where we trained two BSRNN models: one us-
ing the original DnR dataset, and the other using DnR
after applying vocal-removal preprocessing to the mu-
sic and sound effect sources. Both models were con-
figured identically and their performance was evalu-
ated on CDXDB23 using the AIcrowd evaluation sys-
tem. Compared to the model trained on the original
DnR dataset, the one trained on the vocal-removed
DnR dataset achieved 1.32 dB overall SDR improve-
ment on the challenge’s test set. This confirmed our
hypothesis and proved that vocal-removal for the mu-
sic and sound effect class during training with DnR is
an important step in our pipeline.

Another interesting observation we had was about
the dialogue source – we initially tried to treat the
“dialogue separation” task as a “speech enhancement”
task which aims at removing any non-speech com-
ponents out of the mixture, and we trained systems
based on both our speech enhancement system which
ranked 3rd in the 5th DNS challenge (Yu et al., 2022,
2023) and our MSS system (Luo and Yu, 2023) with
the extra cinematic data. We perceptually evaluated
the systems’ performance on internal movie data and
found the quality of their outputs satisfying. However,
all model weights trained with this fashion could not
achieve 13 dB SDR on the hidden test set, no matter

Table 3: Comparison of 2-stem and 3-stem HT demucs
models trained on DnR and evaluated on CDXDB23
(Team ZFTurbo)

Model
Global SDR (dB)

Mean Dialogue Effects Music

HT demucs trained on 2-stems mix 7.560 14.532 3.355 4.794
HT demucs trained on 3-stems mix 6.692 14.530 3.277 2.269
Ensemble of 2- and 3-stems HT demucs 7.630 14.734 3.323 4.834

how we adjusted the training pipeline or the model
design. Later we tried to directly submit the original
MSS system trained on music-only data (MUSDB18-
HQ and another internal music dataset), and the per-
formance of the dialogue source on Leaderboard B sud-
denly reached 15 dB SDR. One possible explanation is
that there might still exist non-speech human sounds
that are categorized as noise by the speech enhance-
ment system but identified as vocals by the music sep-
aration system, possibly due to the differences in the
training data as well as the data mixing strategies used
during training.

4.2 Team ZFTurbo (Roman Solovyev,
Alexander Stempkovskiy, Tatiana Habruseva)

Final ranking: Leaderboard A: —, Leaderboard B: 2nd

4.2.1 Approach
Our approach is based on an ensemble of models suited
best for a particular stem. As we noticed that dialogue
can be extracted with high quality by a vocals model
that was trained originally for music separation, we
separate dialogue by this model first, and then apply
a model trained on the DnR dataset to the remaining
part (music and sound effects). The source code is pub-
licly available on GitHub12.

To compare different models, we developed new
benchmarks and leaderboards for sound demixing
(Solovyev et al., 2023)13. It can be seen from this
leaderboard that various hybrid transformer demucs
(HT demucs) (Rouard et al., 2023) models dominate
all stems except for vocals separation. Models based
on the MDX algorithm (Kim et al., 2021) are the best
for separating the vocals. Therefore, ensembles of dif-
ferent models used for vocal and non-vocal stems are
expected to provide the top overall performance.

To separate the dialogue, we used a combina-
tion of three pre-trained vocals models: UVR-MDX114

and UVR-MDX215 from the Ultimate Vocal Remover
project16, and HT demucs (finetuned)17. The vocals
were separated independently by all of these models
and the results were combined with weights:

ŝDX,1=UVR-MDX1
(
x,overlap=0.6

)
,

ŝDX,2=UVR-MDX2
(
x,overlap=0.6

)
,

ŝDX,3=HT-demucs
(
x, ’demucs_ft’, shifts=1,overlap=0.6

)
.

We tried different weights for the DX ensemble and
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Table 4: Comparison of single model HT demucs with final ensemble model (Team ZFTurbo).

Model
Global SDR on val1 (dB) Global SDR on val2 (dB) Global SDR on CDXDB23 (dB)

Mean Dialogue Effects Music Mean Dialogue Effects Music Mean Dialogue Effects Music

HT demucs (single) 6.387 13.887 2.781 2.494 9.634 14.151 7.740 7.012 2.602 6.650 0.648 0.507
CDX23 best ensemble model 8.922 14.927 3.780 8.060 7.585 9.949 6.377 6.429 7.630 14.734 3.323 4.834

optimized them by considering two datasets that we
created: “Multisong MVSep” and “Synth MVSep” as
detailed in (Solovyev et al., 2023). The weights 10,
4, and 2 for UVR-MDX1, UVR-MDX2, and HT demucs,
respectively, produced the best results on these two
datasets. Interestingly, we observed that the models
with the best SDR for vocals extraction were also the
best for dialogue and, hence, we can rely on the results
from (Solovyev et al., 2023).

After obtaining the high-quality dialogue part, we
can subtract it from the original track to obtain the
non-dialogue part. To separate it into two remain-
ing stems, we trained two versions of the HT demucs
model (Rouard et al., 2023) on the DnR dataset. The
first HT demucs model was trained using the standard
protocol for all three stems, while the second HT de-
mucs model was trained only on two stems: sound ef-
fects and music, excluding dialogue. Table 3 shows
the global SDR on CDXDB23 and we can observe that
the 2-stem model yields better scores. Especially music
benefits from the simplified training mixtures as it im-
proves by 2.5 dB. Interestingly, blending both models is
still beneficial as can also be seen from Table 3, where
we blended four checkpoints from the 2-stem HT de-
mucs training with seven checkpoints of the 3-stem HT
demucs training, giving each the same weight. Please
note that we also updated the vocals model in this
submission and, hence, there is also a slight improve-
ment for vocals if compared to the individual models.
Consequently, for the final submission, we used several
checkpoints of each of the 2-stem and 3-stem models to
average predictions and obtain better generalization.

4.2.2 Results

Table 4 shows the results of the ablation study with
and without a separate dialogue removal. We used
two validation sets: val1 – validation on two tracks
provided by the organizers, and val 2 – a subset of 20
random tracks from the DnR test set. The single HT
demucs model showed promising results on both val-
idation sets (see Table 4). However, the model per-
formance was poor on CDXDB23 and the best results
can only be obtained with our ensemble model which
first extracts dialogue with a vocals model from music
separation and then employs an HT demucs for sound
effects and music separation. val1 correlated better
with CDXDB23 dataset than val2, which is based on
the DnR dataset. Still, metrics on val1 did not strongly
correlate with the final results, presumably due to the
tiny size of the demo set.

4.2.3 Discussion
During the competition, we noticed that the DnR
dataset contains vocals in the music part sometimes.
Our SDR for vocals on the leaderboard is very high,
but our vocals model extracts all vocals from audio.
Based on this, we made a conclusion that music in the
competition dataset most likely never contains vocals.

4.3 Team mp3d (Mikhail Sukhovei)

Final ranking: Leaderboard A: 2nd, Leaderboard B: 5th

4.3.1 Approach
Since the training data for Leaderboard A was re-
stricted to only the DnR dataset, we focused on identi-
fying the shortcomings of the baseline multi-resolution
crossnet (MRX) (Petermann et al., 2022) model and
improving it. We implemented a modification of
this model called conditional multi-resolution crossnet
(MRX-C) (Petermann et al., 2023). The essence of this
modification is to train an additional CRNN model that
predicts source activity labels. The output of the MRX
model (which estimates music, dialogue, and sound ef-
fects) is converted into a mel-spectrogram and concate-
nated with the mel-spectrogram of the original audio
to form a (4,nmel s ,n f r eq ) tensor, which is then fed into
the CRNN.

To further improve our solution, we analyzed the
effect of the Wiener filter on the final score as well as
the influence of post-processing source scaling on the
final SDR score.

4.3.2 Results
During the competition, we observed that validation
on DnR is significantly different from metrics obtained
on CDXDB23. This difference arises due to the depen-
dence of the MRX and MRX-C model performance on
the volume of the input signal. For testing on DnR,
the optimal value was found to be −27 LUFS, which
yielded the maximum SDR value. To obtain the opti-
mal input volume for real world data, we propose a Re-
alistic Evaluation Dataset (RED) consisting of 26 stereo
audio tracks of 20 seconds each. These audio samples
were manually compiled, with an average sample vol-
ume of approximately −15 LUFS and a sampling rate
of 44.1 kHz. Additionally, each audio file includes sep-
arate tracks for dialogue, music, and effects, all with
the same duration and with average sample volumes
of −24.4±4.5 LUFS for dialogues, −18.8±0.5 LUFS for
effects and −18.4± 5.0 LUFS for music. All the origi-
nal audio files are sourced from the open archive.org
platform. The RED dataset was used only to select the
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Figure 5: SDR dependencies on the input volume in LUFS for music, dialog, and effects. A solid line shows SDR
values on RED, crosses mark on CDXDB23. Horizontal dashed and dotted lines show SDR for models without
converting the volume of the input signal. The MRX model is blue, MRX-C is orange, MRX-C with a Wiener
filter is green, and MRX-C with post-processing scaling is red. In the case of testing MRX-C scaling on the
CDXDB23, the SDR values are only available for effects (Team mp3d).

optimal value of the input signal volume of the model.

As shown in Fig. 5, the optimal volume value dif-
fered significantly from that of DnR, both in the case
of RED and CDXDB23. Furthermore, the SDR met-
ric on RED was more consistent with CDXDB23. After
separating the sources, they were brought back to the
original volume and a Wiener filter and post-processing
scaling were applied. Post-processing scaling involved
multiplying the estimated sources by a factor of 1

α ,

where α =
∑

n x(n)T ŝ(n)
10−7+∑

n∥ŝ(n)∥2 , x(n) is the mixture and ŝ(n)

is an estimated source.

Table 5 summarizes the SDR metrics on RED for the
baseline MRX solution, MRX-C, MRX-C with Wiener fil-
ter, and MRX-C with source scaling. As shown in the ta-
ble, the MRX-C model yields a 0.1 dB improvement in
dialogue and a 0.1 dB decrease in effects. The Wiener
filter yields a 0.1 dB improvement in music, a 0.3 dB
improvement in dialogue, and a 0.3 dB improvement
in effects. Post-processing scaling results in a 0.2 dB
decrease in music, a 0.6 dB decrease in dialogue, and
a 0.3 dB increase in effects. Our final solution involved
applying the Wiener filter only to the dialogue and
post-processing scaling only to the effects.

4.3.3 Discussion
In the future, we plan to study the effect of adding
additional activity labels contained in the DnR data
on the MRX-C model accuracy. Additionally, to use
the model on real data, we need to make the result
of source separation independent of the input volume.
Unlike the approaches of other teams in this competi-
tion, we focused on training a single model rather than
an ensemble of models. A key aspect of our solution is
to apply the normalization of the mixture at the input
of the model.

5. Distribution Mismatch between DnR and
CDXDB23

In the following, we will analyze the distribution mis-
match between DnR and CDXDB23 that was noticed
by the participants in Sec. 4. This will give us insight
into the recording and production differences as well
as allow us to train two improved cocktail-fork models
with an adjusted version of DnR.

5.1 Difference in Signal Statistics
First, we will compare the signal characteristics be-
tween DnR and CDXDB23. Our focus will be on loud-
ness, equalization, stereo panning, and dynamic range
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Table 5: SDR values obtained during testing on RED
for MRX, MRX-C, MRX-C with Wiener filter, and
MRX-C with scaling. SDR values from the table are
maximum possible values from all input volumes
(Team mp3d).

Model
Global SDR (dB)

Mean Dialogue Effect Music

MRX 4.38 8.38 1.72 3.02
MRX-C 4.36 8.48 1.62 2.99
MRX-C Wiener 4.57 8.75 1.90 3.07
MRX-C scaling 4.24 7.92 1.95 2.85

compression as they are key elements in audio mixing
(Martínez-Ramírez et al., 2022).18

Loudness—We measured the loudness for each audio
clip in both datasets using ITU-R BS. 1770-4 (1770-
4, 2015) with the help of pyloudnorm (Steinmetz and
Reiss, 2021). The average loudness values are shown
in Table 6 and the histograms can be found in Fig. 6.
We can observe that CDXDB23 utilizes the full range of
loudness for all three classes whereas DnR has a more
limited range. On average, DnR is 4 LUFS louder than
CDXDB23. Notably, CDXDB23 uses the same loud-
ness level for effects and music which is 5 LUFS lower
than dialogue. This balance is likely due to a post-
production step which was not considered in DnR.
Equalization—To assess equalization differences, we
normalized each waveform to −24 LUFS and calculated
the magnitude STFT spectrogram using a Hann win-
dow of 4096 samples with 75% overlap. The average
equalization curves are displayed in Fig. 7. It shows
that CDXDB23 generally has a faster decay at low and
high frequencies but more energy in the mid-frequency
range compared to DnR. We attribute this to the use of
parametric EQs containing low and high shelf filters in
the post production process for CDXDB23, while DnR
consisted mostly of web content, which likely lacked
professional post production.
Amplitude panning—We calculated the Stereo Pan-
ning Spectrum as outlined in (Tzanetakis et al., 2007;
Avendano, 2003) and as used in (Martínez-Ramírez
et al., 2022). Using the magnitude spectrogram from
the earlier equalization analysis, we computed

Ψ( f ) = 2
XL( f )XR ( f )

XL( f )2 +XR ( f )2 , (5a)

∆( f ) = sign
(
ΨL( f )−ΨR ( f )

)
= sign

(
XL( f )XR ( f )

XL( f )2 − XL( f )XR ( f )

XR ( f )2

)
, (5b)

where XL/R ( f ) denotes the left/right channel magni-
tude spectrogram. Ψ( f ) measures whether frequencies
are panned, regardless of direction, while ∆( f ) mea-
sures which direction frequencies are panned to. Fig-
ures 8 and 9 show the average values for both datasets.

It is important to note that DnR is monaural, which
results in a horizontal line for Ψ( f ) and ∆( f ). From
these figures, we see that in the audio mixing process,
dialogue is typically centered, while effects are more
often panned to one side. Music shows the most var-
ied panning. Figure 9 indicates that there is no specific
preferred direction for panning in the datasets.
Dynamic range compression (DRC)—Lastly, we an-
alyzed the used DRC by calculating the average peak
value as DRC usually alters the transients. We started
by normalizing the loudness of the audio waveform
to −24 LUFS. Then, we used the high frequency con-
tent (HFC) method for onset detection, as described
by (Masri, 1996; Brossier et al., 2019) and as im-
plemented in (Martínez-Ramírez et al., 2022). For
each audio clip, we calculated the average peak level
Pµ. This measure helps us understand the extent
of DRC applied; larger Pµ values indicate less com-
pression since the peaks are more pronounced at the
same loudness level. From the data in Table 6, we
see that CDXDB23 exhibits more uniform compression
compared to DnR. Notably, in DnR, effects are less
compressed compared to dialogue and music. This
contrast in compression is not observed in CDXDB23,
where compression is more consistently applied across
all three classes due to being professionally produced.

5.2 Improving the Cocktail-Fork Baseline

Using our understanding of the distribution differences
from the previous section, we aim to enhance the
cocktail-fork model from Sec. 3.3. We created two
updated versions of DnR, modifying either the aver-
age loudness or the average equalization for each au-
dio source. For the loudness adjustment, we changed
the loudness of each source stem by a specific amount.
For example, we altered the loudness of each dialogue
stem by 4 LUFS (from −28.4 to −24.4 LUFS). This ad-
justment was made so that the average loudness of the
modified DnR matches that of CDXDB23. Regarding
equalization, we designed a 101-tap FIR filter for each
audio source. The magnitude response of this filter is
the square root of the difference between the average
equalization of CDXDB23 and DnR. We then applied
this filter to each stem using forward-backward filter-
ing (filtfilt), as mentioned in (Martínez-Ramírez
et al., 2022). This process modifies the amplitude with-
out altering the phase of the audio.

Table 7 shows the improvements to the cocktail-
fork model. Please note that an additional feature for
mixture loudness normalization was introduced with
version 1.1, setting the mixture to −27 LUFS. We will
discuss the results without considering this normaliza-
tion, although similar trends are observed with it. The
results in Table 7 indicate that adjusting the loudness
is particularly effective. The mean SDR improved from
−0.1 dB to 1.3 dB, primarily due to enhanced perfor-
mance in dialogue. Adjusting the equalization also
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Table 6: Loudness and Dynamic Range Compression (DRC) statistics for DnR and CDXDB23.

Divide and Remaster (DnR) CDXDB23
Dialogue Effect Music Dialogue Effect Music

Loudness (LUFS) −24.4±1.3 −29.7±1.9 −31.4±1.8 −28.4±3.1 −33.9±8.0 −33.6±7.1

DRC (dB) −10.7±0.9 −5.1±2.4 −12.6±1.4 −11.4±1.3 −10.6±3.7 −11.2±2.3
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Figure 6: Comparison of loudness between DnR and CDXDB23.
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Figure 7: Comparison of average equalization between DnR and CDXDB23. Dashed curves give one standard
deviation above/below average.
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Figure 8: Comparison of average amplitude panning between DnR and CDXDB23. Channel amplitude similarity
Ψ( f ) can take values 0 ≤Ψ( f ) ≤ 1 whereΨ( f ) = 1 refers to panning frequency f to the center whereasΨ( f ) < 1
denotes a panning to either side. Dashed curves give one standard deviation above/below average. Please
note that DnR is monaural and, hence, Ψ( f ) collapses to a horizontal line at Ψ( f ) = 1.
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Figure 9: Comparison of average amplitude panning between DnR and CDXDB23. ∆( f ) = sign
(
ΨL( f )−ΨR ( f )

)
denotes the panning direction where ∆( f ) < 0 refers to panning to the left and ∆( f ) > 0 to a panning to the
right. Dashed curves give one standard deviation above/below average. Please note that DnR is monaural
and, hence, ∆( f ) collapses to a horizontal line at ∆( f ) = 0.

showed benefits, with an overall improvement of 0.3
dB. Here, both dialogue and effects showed improve-
ment, but there was a slight decrease of 0.2 dB in mu-
sic. We believe this decrease in music is linked to the
fluctuation in the equalization curve shown in Fig. 7,
which correlates with the frequencies of musical notes.
This fluctuation could inadvertently act as a marker on
the music stems, making them easier for the model
to separate, leading to a slight decline in music per-
formance. Both trained models are available on the
cocktail-fork GitHub6.

In summary, by aligning the DnR dataset more
closely with a more realistic dataset like CDXDB23, we
significantly enhanced the performance of the model.
This approach presents a promising avenue for future
research in this field. Besides using mono-to-stereo
augmentation for stereo panning and compressors to
adjust the DRC, also combining all of them should be
considered to close the distribution mismatch as much
as possible. Using the reported statistics in Sec. 5.1 will
help to choose realistic parameters for the data aug-
mentation.

6. Summary and Outlook
The CDX track of SDX’23 has provided valuable in-
sights into the current state-of-the-art in cinematic au-
dio separation and has highlighted areas for future re-
search and development.

Looking at the results for Leaderboard A, we can
observe that models suffered from the constraint of
only being allowed to utilize the DnR dataset. This
caused a “simulation-to-reality” gap where models
were trained on simulated data, but evaluated on real-
world data (CDXDB23). In particular, the following
challenges were identified by the participants:
• The DnR dataset contains sometimes vocals within

the music, leading to confusion during model train-
ing. Preemptively removing these vocals prior to
training was found to enhance model performance.

• The dialogue data in the DnR dataset, being read

speech, lacks emotional speech elements such as
shouting, as well as other human sounds like breath-
ing or humming. This absence posed a challenge for
the models.

• Lastly, a mismatch in loudness was observed be-
tween the training and evaluation data. If not ac-
counted for, this mismatch could lead to suboptimal
model performance as we also saw in Sec. 5.

Hosting a competition like SDX’23 allows to identify
and address these issues, thereby contributing signif-
icantly to the field. Moreover, the allowance for par-
ticipants to utilize additional data, as seen in Leader-
board B, proved beneficial. Particularly, an improve-
ment of approximately 6 dB was observed for dialogue
when comparing the results of Leaderboard B to those
of Leaderboard A.

Another interesting observation was the successful
application of cascaded approaches, which initially fil-
tered out dialogue. The effectiveness of this strategy
can likely be attributed to two factors. First, the sub-
stantial amount of available data for vocals and the ex-
istence of highly efficient models, honed through re-
search in the field of music separation (Stöter et al.,
2018; Mitsufuji et al., 2022; Fabbro et al., 2023), pro-
vide a strong foundation for dialogue extraction. Sec-
ond, vocals, which include sounds like breathing, bear
a close resemblance to dialogue, thereby facilitating
the extraction of dialogue from movies. As cinematic
separation is a relatively young field, further advances
are required, particularly in the extraction of sound ef-
fects and music.

Looking forward to the next challenge, we antici-
pate further advances in the field. Exploring uncharted
areas such as mono-to-stereo augmentations is inter-
esting and will have a positive impact on performance.
We also aim to encourage participants to develop mod-
els that are robust to variations in the input data, such
as loudness invariance. The goal remains to push the
boundaries of what is possible in cinematic audio sep-
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Table 7: Results on CDXDB23 for training the cocktail-fork model with adjusted DnR versions where we matched
either the average loudness or the average equalization from CDXDB23. “input norm” refers to the loudness
normalization to -27 LUFS introduced with version 1.1 of the cocktail-fork model.

Training Dataset
Global SDR w/o input norm (dB) Global SDR w/ input norm (dB)
Mean Dialogue Effect Music Mean Dialogue Effect Music

DnR −0.104 4.108 −2.018 −2.401 0.325 4.662 −1.979 −1.707

DnR w/ adapted loudness 1.287 6.535 −1.506 −1.168 1.539 6.727 −1.278 −0.832

DnR w/ adapted equalization 0.176 4.621 −1.470 −2.623 0.544 4.922 −1.212 −2.078

aration and to continue fostering innovation in this
exciting field. This first edition of the challenge has
demonstrated the utilization of models, data, and con-
cepts from music separation to enhance cinematic sep-
aration. We believe that this represents an initial stage,
and look forward to future development of more spe-
cialized ideas and approaches exploiting also the signal
statistics presented in Sec. 5.1.

Notes
1 Frequently, sound effects for a movie must be cre-

ated when no suitable option is at hand as they need
to provide “sound” for new objects. A notable illustra-
tion is the crafting of the Godzilla Roar (Sound Effects
Wiki, 2024), where a contrabass string was rubbed
with gloves soaked in pine tar to produce the dis-
tinctive sound used as Godzilla’s roar. Numerous in-
stances exist where sound effects had to be invented
for movies, contributing significantly to the overall di-
versity within the sound effects category.

2 https://www.aicrowd.com/challenges/
sound-demixing-challenge-2023

3 There was a related discussion about “mu-
sic” vs. “sound effects” and “dialogue” dur-
ing the competition which can be found here:
https://discourse.aicrowd.com/t/class-label-
definition-of-sound-effects-and-music/8490.

4 Given the absence of universally accepted rules for
multi-channel spatialization, the DnR dataset does not
incorporate it, leading to a disparity with the hidden
test set (CDXDB23). As a result, participants are com-
pelled either to develop suitable data augmentation
during training or to employ channel-wise processing
which can be combined with a multi-channel Wiener
filter during inference as already proposed in (Peter-
mann et al., 2022).

5 The short movie “Kilian’s Game” and re-
lated content can be accessed via the fol-
lowing links. The full movie is available at
https://www.youtube.com/watch?v=PxKB8NKQj3U,
and a behind-the-scenes look can be found at
https://www.youtube.com/watch?v=NdUuiwmHsKU.
Participants could also view the output of their
system on demo clips, available at https://www.
youtube.com/embed/PxKB8NKQj3U?start=39&end=62
and https://www.youtube.com/embed/PxKB8NKQj3U?

start=32&end=39.
6 https://github.com/merlresearch/

cocktail-fork-separation
7 https://gitlab.aicrowd.com/aicrowd/

challenges/sound-demixing-challenge-2023/
sdx-2023-cinematic-sound-demixing-starter-kit

8 https://gitlab.aicrowd.com/yoyololicon/
cdx-submissions

9 https://gitlab.aicrowd.com/
mikhail_sukhovey/mrxc, https://
gitlab.aicrowd.com/mikhail_sukhovey/
sdx-2023-cinematic-sound-demixing-starter-kit/
tree/3695fd3e2cf85cddad6446decf276fc8dc46d27d
10 https://github.com/naba89/iSeparate-SDX
11 https://github.com/ZFTurbo/
MVSEP-CDX23-Cinematic-Sound-Demixing,
https://drive.google.com/file/d/1AQt2uNMdTI_
aGcyFEjKGe-GCetKK3xo0/view?usp=sharing
12 https://github.com/ZFTurbo/
MVSEP-CDX23-Cinematic-Sound-Demixing
13 https://mvsep.com/quality_checker/.
14 Checkpoint “Kim_Vocal_1.onnx” available at
https://github.com/TRvlvr/model_repo/releases/
download/all_public_uvr_models/Kim_Vocal_1.
onnx
15 Checkpoint “UVR–MDX–NET–Inst_HQ_2.onnx”
available at https://github.com/TRvlvr/model_
repo/releases/download/all_public_uvr_models/
UVR-MDX-NET-Inst_HQ_2.onnx
16 https://github.com/Anjok07/
ultimatevocalremovergui
17 Checkpoint “htdemucs_ft” available at https://
github.com/facebookresearch/demucs
18 As in (Martínez-Ramírez et al., 2022), we do not
consider the reverberation of the signals as blind esti-
mation of reverberation features such as reverberation
time is an open research area which has mostly been
worked on only for speech signals.
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